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Abstract 
This white paper describes the considerations for taking a deep learning project from initial 
conception to production, including understanding your business and data needs and 
designing a multistage data pipeline to ingest, prep, train, validate, and serve an AI model. 
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1 Intended Audience 
This white paper is primarily intended for data engineers, infrastructure engineers, big data architects, 
and line of business consultants who are exploring or engaged in deep learning (DL). It should also be 
helpful for infrastructure teams that want to understand and address the requirements of data scientists 
as artificial intelligence (AI) projects move from pilot to production. 

2 Introduction 
There are many ingredients for AI success, from selecting the best initial use case, to assembling a team 
with the right skills, to choosing the best infrastructure. Given the complexity, it’s easy to underestimate 
the critical role that data plays in the process. However, if you look at the timeline for a typical AI project, 
as illustrated in Figure 1, most of the time is spent on data-related tasks such as gathering, labeling, 
loading, and augmenting data. 

This is where the concept of a data pipeline comes in. A data pipeline is the collection of software and 
supporting hardware that you need to efficiently collect, prepare, and manage all the data to train, 
validate, and operationalize an AI algorithm.  

The need for a well-designed data pipeline may not be immediately evident in the early stages of AI 
planning and development, but its importance grows as data volumes increase and the trained model 
moves from prototype to production. Ultimately, your success may hinge on how effective your pipeline is. 
If you don’t start thinking about how to accommodate data needs early enough, you are likely to end up 
doing some painful rearchitecting. 

This white paper is intended to help you understand the elements of an effective data pipeline for AI: 

• What are the most common options in the software stack in each stage? 
• When should various software options be applied? 
• How do the software and hardware work together? 

Although the focus of this paper is on building a data pipeline for deep learning, much of what you’ll learn 
is also applicable to other machine learning use cases and big data analytics. 

 

 

Figure 1) Most of the time needed for a deep learning project is spent on data-related tasks. 
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3 What Is a Data Pipeline? 
The main purpose of a data pipeline is to enable you to gather and manage the datasets needed for 
model training. This includes getting the data into a form that your model can digest and understand. The 
underlying architecture of your pipeline will vary depending on the sources and data types you are 
drawing from. Data types and data sources are discussed in section 5,  Understanding Your Data Needs. 

A data pipeline is logically divided into stages, as shown in Figure 2.  

 

  

Figure 2) Stages in the data pipeline for deep learning. 

Challenges to a Successful AI Deployment 
Any AI project may face challenges in a variety of areas.  

Data Engineering. Much of the time for an AI project is likely to be spent on data-related tasks like 
labeling, normalization, tokenization, and more.  

Computation. Training a deep learning algorithm requires large numbers of cores. Graphics 
processing units (GPUs) with thousands of cores and purpose-built hardware interconnects between 
GPUs are necessary for AI training with large datasets. 

Algorithm choices. Training is mostly done in parallel across many GPUs.  

• If the model fits inside GPU memory, then copies of the model are deployed on many GPUs and 
a subset of data is fed to each GPU in parallel for training. GPUs need to communicate with each 
other either synchronously or asynchronously, with a trade-off between better convergence 
versus lower communication costs.  

• If the model cannot fit in the memory of a single GPU, then the model itself has to be split and 
run across many GPUs.  

Infrastructure challenges. GPUs, CPUs, network switches, and fast storage all have to be carefully 
architected to achieve the optimal configuration and avoid bottlenecks. This applies to both training 
the model and inferencing once a model has been trained. 

Operational challenges. These challenges are divided into ScienceOps and DevOps: 

• ScienceOps involves data provenance, experiment management, hyperparameter tuning, and 
other tasks necessary to deliver a well-trained deep learning model. 

• DevOps involves tasks such as how AI training jobs are submitted (batch or interactive), 
monitoring of jobs, scheduling, and so on. Once a model is completed, further DevOps tasks are 
required to incorporate that model with code and to manage deployments over time as the model 
is retrained, enhanced, or the software using the model output evolves.  
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Here’s what happens in each stage in a typical deep learning use case:  

• Data ingest. Ingestion often occurs at the edge—for example, capturing data from cars, point-of-sale 
devices, or cameras on an assembly line. Depending on your use case, you may need to stream data 
as it comes in, or you may cache the data at the edge and forward it periodically. 

• Data prep. Some form of preprocessing is almost always necessary to prepare data before training. 
Preprocessing often takes place in a data lake. 

• Training. During training, datasets may be copied from the data lake into a training cluster, which can 
have a tremendous appetite for I/O.  

• Validation. Before a model can be deployed, it has to be validated to ensure that the results it 
delivers are valid. Several cycles of data prep, training, and validation may be required to identify the 
features and parameters that yield the best results. 

• Deployment. The resulting model is moved to software development and then to production. 
Depending on the use case, the model might be deployed back to edge operations. Real-world 
results of the model are monitored, and feedback in the form of new data flows back into the data 
lake, along with new incoming data to iterate on the process and periodically retrain the model. 

• Archive. Data used in each training run may be saved indefinitely. Many AI teams archive cold data 
to object storage in either a private or a public cloud. 

All of these stages are important, but the transitions between stages are often just as crucial. Data has to 
flow efficiently from ingest to data prep to training to validation. Later chapters of this paper examine the 
stages in detail, including important transitions. 

 

  

Software 1.0 Versus Software 2.0 
In conventional software development, developers do coding work on laptops or small workstations 
and the completed software is deployed on high-end production servers in a well-understood 
workflow: 

Development  Deployment  Production 

By comparison, in AI development the “development server” is often a GPU supercomputer (training 
cluster) and the trained model is deployed on a smaller system that is GPU-enabled or that contains 
other specialized hardware for inferencing. Deployment of a model from the training system to 
inference is called serving. The workflow for AI therefore looks like this: 

Training  Serving  Inference 
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4 Understanding Your Business Needs  
AI is becoming a foundational technology with benefits for every industry. It is transforming industries 
such as agriculture, manufacturing, automotive, pharmaceuticals, and financial services. In many 
industries, machine learning and deep learning are already essential to competitiveness and long-term 
viability. 

The first step in any AI project is to analyze your business needs and choose the best use case for your 
organization to tackle. Many teams begin with a use case that is prevalent in their industry, particularly if 
it’s their first AI project.  

It can be helpful to consider a “land and expand” strategy, picking a use case that has a good chance of 
producing results in a relatively short period, and then expanding on that use case in other areas of the 
business. For example, Liberty Mutual Insurance started with a digital assistant (or chatbot) for its internal 
employees, a relatively safe use case with no direct customer exposure. Success allowed Liberty Mutual 
to pilot a similar technology approach in its customer call center and also to commercialize the software 
through its Workgrid Software subsidiary.  

Figure 3 summarizes some common use cases for a variety of industry sectors. 

 

 

Figure 3) Popular AI use cases in different industries 

https://sloanreview.mit.edu/offer-aws-implementing-ai-case-study-2019
https://www.workgrid.com/
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5 Understanding Your Data Needs 

 
Once you’ve chosen an AI use case to pursue, the next step is to critically assess the data you have to 
support that use case. If you don’t have the necessary dataset, you’ll have to figure out how to get the 
data you’re missing. In some cases, you may have to table the use case until you can put in place the 
processes and infrastructure to gather the necessary data. 

If your organization is new to big data and AI, you may want to start thinking about all of your company’s 
data assets now. Having the right governance policies in place helps to ensure that datasets are 
available, usable, and consistent when your data science teams need them. It’s also important to ensure 
that key regulations for data protection and data privacy are met. 

An important realization when thinking about your data is that not all datasets can be treated the same; 
there are many different data types. Your use case may require only one data type, or it could encompass 
multiple types, and the data types you are using may determine the software tools needed in each stage 
of the data pipeline. 

A number of common data types along with examples and sources are shown in Table 1. 

Table 1) Common data types in deep learning. 

Data Type Examples Sources 

Images • Assembly line cameras 
• Medical imaging 
• Geospatial Imagery 
• Geologic images 
• Thermal Imaging 
• Lidar 3D Point Cloud • NFS 

• Lustre 
• GPFS 

Video • Security cameras 
• Autonomous vehicles 
• Drones 
• Cobots 

Audio • Voicemail 
• Customer service calls 
• Acoustic data 

Time-Series Data • Internet of Things (IoT) 
• Securities prices 
• Scientific data 

• NoSQL databases (Cassandra, 
AeroSpike) 

Text • Log data 
• Unstructured text 
• Documents 

• Splunk, ELK, etc. 
• NFS, Hadoop/HDFS 
• NoSQL databases (MongoDB) 

Graph • Social media data 
• GPS navigation 

• Graph databases 

 

Powerful compute resources and machine learning frameworks can be used only when a company 
has relevant data assets and has taken steps to prepare and transform data to be used to train 
models. 

—Implementing AI: From Exploration to Execution 

https://sloanreview.mit.edu/sponsors-content/implementing-ai-from-exploration-to-execution/
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Each data type may be stored in a unique way. As Table 1 also shows, you may have to incorporate data 
from a variety of sources, from Hadoop to NoSQL databases to file systems such as NFS and Lustre. You 
may need to work with data that has already been collected, as well as streaming data from video 
cameras, sensors, applications, ecommerce transactions, and so on. (Streaming data is covered in 
Chapter 6, “Ingest Data and Move Data from Edge to Core to Cloud.”)  

The algorithm you are training may only require data from internal sources, but you may also need 
externally sourced data, such as weather data, demographics, or social media posts. 

For each source (internal and external) you need to make sure that you have a right to the data, that 
you’re not violating compliance guidelines or regulations, and that you can access the data in a consistent 
format in the necessary timeframe. 

 

 

5.1 Data Needs for Various Industry Use Cases 

 

If the preceding discussion seems a bit esoteric, a few use cases should help clarify the data needed for 
AI.  

Retail: Inventory Optimization 
A global retailer, such as a convenience store, needs to take many factors into account to optimize the 
inventory in each location. A retail environment can be extremely dynamic, with perishable items needing 
to be restocked daily, while beverages and other items are restocked just one to three times per week. 

The necessary data includes: 

• Localization. What products are popular in the area where the store is located? 
• Product trends. What is the sales trend for each product stocked? 
• Historic trends. What did product sales look like last month? Last year? 

In contrast with a traditional software product, it is data rather than code that is of primary importance 
in a deep learning system.  

—Allegro.ai  

Why the Three Vs Matter  
AI learns from the features and attributes of your data. The three Vs of big data—volume, variety, 
and veracity—therefore have a direct influence on the accuracy of your AI model.   

Volume. As a rule, the greater the volume of data the better the performance of the deep learning 
system.  

Variety. Variety means having diverse attributes and features in the dataset. The greater the variety, 
the more accurately a deep learning model can generalize.  

Veracity. In computer vision and other models, learning requires labeled data. Correct labeling of 
data (veracity) is crucial to accurate models. Hand-labeled training datasets are expensive and time 
consuming to create. Therefore new techniques are being developed to programmatically generate 
training datasets.  
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• Promotions. What is the impact of coupons or other promotions? 
• Demographics. Who lives in the area surrounding this location? 
• Weather. What is the weather forecast for the forecast period, and how will that affect overall sales 

and sales of individual products? 

Healthcare: Smart Inhaler 
In the United States alone, there are 25 million asthma sufferers—1 in every 13 people. Adding a few 
sensors and Bluetooth connectivity to asthma inhalers can provide a wealth of useful data. Because 
patients often use inhalers in response to symptoms, there’s a huge opportunity to correlate usage and 
location data. Combining patient data with information such as weather, air quality, and pollen counts has 
the potential to help patients avoid triggers in real time, minimizing risks and improving their overall 
health. 

Computer Vision 
Before you reach the mistaken assumption that every deep learning use case requires correlations 
across diverse datasets and data types, let’s look at computer vision, which has applications across 
almost all industries and often involves only images or video. For example, manufacturers often use 
computer vision to detect anomalies in finished parts, and it is also applied in healthcare to interpret CT, 
MRI, and other diagnostic scans. If you’ve ever used your mobile phone to deposit a check to your bank 
account, that’s a computer vision application that has become so commonplace in the last few years that 
it’s easy to overlook. 

NetApp partner Allegro.ai specializes in the use of deep learning in computer vision with a deep 
understanding of data needs. Allegro.ai frames the central challenge of computer vision this way: “A 
neural network for computer vision will only perform well in the field if it is thoroughly trained with a 
dataset that effectively mimics the environment it will see in production. While this requires large amounts 
of data, it is not the sheer volume that determines success but the degree to which the training images 
and videos reflect the specific reality your edge devices will be exposed to.”  

6 Ingest Data and Move Data from Edge to Core  
Data ingest is an important consideration for every deep learning use case, but it’s particularly crucial for 
use cases that involve data sources at the edge. Data ingest is likely to be much less of a concern when 
you’re sourcing data from an image archive than—for example—when you’re gathering IoT data from 
sensors distributed across a dozen production and distribution facilities. Figure 4 illustrates how data 
flows from edge to core to cloud. 

Figure 4) Data often flows from edge devices to core data centers or the cloud for training. 

http://www.aafa.org/page/asthma-facts.aspx
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Some data types lend themselves to a batch approach to data ingest, in which you store and periodically 
forward data, while others require a streaming approach. With either method, the destination is likely to 
be a data lake, where you can explore and transform the data as needed. 

As a rule, a mapping exists between the type of data you’re ingesting and the method of data movement 
that is needed. For example, text and numeric data sources tend to use streaming data movement, while 
image, video, and audio sources may use streaming data movement or batch data movement. 

Once you train and deploy a deep learning model, you may decide to transition from streaming to batch 
data movement. For example, you might stream all images needed to initially train a computer vision 
model. However, once you have a trained model deployed at the edge, you can transition to storing data 
locally and forwarding only “interesting” images—for instance, ones that the model has trouble with. 

6.1 Streaming Data Movement 
Streaming data movement is often accomplished by using the Apache open source tools Kafka, Flume, 
and NiFi: 

• Kafka is a well-known and widely used message broker that allows data “consumers” to subscribe to 
streams from “producers.” Strengths include reliability and scalability. Limitations include a need for 
custom coding and message size limits. 

• Flume is well suited for moving high-volume streaming data into Hadoop. Limitations include the 
chance of data loss in some failure modes and message size limits. 

• NiFi provides real-time control that makes it possible to manage data movement between any source 
and destination. It is well suited for mission-critical data movement with security and compliance 
requirements and has no message size limit. NiFi lacks the data replication capability of Kafka. 

For help choosing among these tools, use the links in the preceding list. For a useful comparison of the 
three, see Big Data Ingestion: Flume, Kafka, and NiFi.  

If your use case requires IoT data from industrial equipment and sensors, you may also need to 
accommodate one of several specialized protocols used in the space. IoT traces its roots back to the 
1980s and 1990s and has evolved its own protocols and standards to support a variety of low-memory, 
low-power devices. Common protocols include: 

• MQTT. Message Queue Telemetry Transport 
• DDS. Data Delivery Service 
• AMQP. Advanced Message Queuing Protocol 
For wireless data transmission, Zigbee is popular, and you’ll also see more familiar protocols, including 
Bluetooth, WiFi, and cellular networks. The forthcoming 5G cellular technology is expected to play a big 
role in IoT in the future.  

6.2 Batch Data Movement 
If you have the ability to store data near the edge and forward it periodically, a variety of Linux commands 
can do the job, such as rsync, or even cp or mv. However, use of these tools does require some scripting. 
You can also use REST API calls, such as object puts, to move data items directly into an object store 
such as Amazon S3. 

There are vendor tools that are well suited to this purpose, eliminating the need to maintain scripts or 
programs while integrating encryption for security, as well as data efficiency technologies such as 
deduplication and compression to utilize network bandwidth and storage capacity efficiently. 

• NetApp SnapMirror. Provides data aggregation and data movement from edge to core with data 
reduction and encryption for efficiency and security. 

• NetApp Cloud Sync. Provides seamless and secure data synchronization from edge to cloud. 

https://kafka.apache.org/
http://flume.apache.org/
http://nifi.apache.org/
https://dzone.com/articles/big-data-ingestion-flume-kafka-and-nifi
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7 Prepare Data for Training  
The data prep stage of the AI data pipeline encapsulates a number of functions, the purpose of which is 
to create a dataset that is suitable for training and validating a deep learning model. Keep in mind that 
data prep isn’t necessarily a discrete function. You may do some preprocessing on ingest and some prior 
to training, or you may do all data prep in line with the training process. 

Data prep can include: 

• Exploring the data. What is the hypothesis for your model, and what features of the data are likely to 
be predictive? 

• Cleaning up data types and data formats. Training is likely to go more smoothly if your data is 
consistent; however, you don’t want it to be too much more consistent than the live traffic the model 
will receive. 

• Adjusting the training dataset. You need to make sure that the feature you are training the model 
on is adequately represented. For example, you can’t train an effective model for anomaly detection if 
your dataset consists only of images of “good” parts. 

• Labeling datasets. For supervised learning, you need datasets that are labeled.  
• Splitting the dataset into training, validation, and testing sets. You need enough data to provide 

a training set, a separate validation set that is used during training (but that the model is not trained 
on), and a testing set to assess the performance of the trained model. 

Data prep, especially in early phases of model development, is frequently an iterative, exploratory 
process in itself, aimed at understanding which processes deliver the best results. Table 2 shows 
common data preparation activities for various data types. 

Table 2) Common data preparation steps for various data types. 

Data Type Common Data Preparation Steps 

Images • Make sure that all images are the same size and resolution. 
• Make sure that all images are black and white or all color. 
• Label features in images. 
• Correct any data imbalances (using oversampling, undersampling, 

data augmentation, class weights). 

Video • Extract JPEGs or BMPs of each frame. 
• Scale image size up or down as needed. 
• Correct any data imbalances (using oversampling, undersampling, 

data augmentation, class weights). 

Audio • Choose sampling rate. 
• Transform signal from time domain to frequency domain. 
• Use magnitude compression. 

Time-Series Data • Normalization (all values between 0 and 1). 
• Standardization (rescaling values so mean is 0 and standard deviation 

is 1). 

Text • Normalization (eliminate case and punctuation, convert numbers to 
text, etc.). 

• Tokenization (split text into “tokens” that represent words, sentences, 
or paragraphs). 

• Noise reduction (remove headers and footers, HTML, metadata, etc.). 
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7.1 Accelerate Data Labeling  
Because data preparation is so time consuming, a number of companies specialize in helping streamline 
the process. In particular, many deep learning use cases involve supervised learning, which requires 
labeled data. Data labeling is therefore a big issue for many deep learning projects.  

It’s rare for labeled datasets to exist with the specificity you require, so data labeling is often a labor-
intensive manual process. Business process outsourcing companies can provide cheap labor to carry out 
manual data labeling.  

NetApp is collaborating with the following companies that are innovating in data preparation and data 
labeling automation to accelerate data labeling tasks: 

• Figure Eight is developing a platform that can transform text, image, audio, and video data into 
customized training data, including machine-learning-assisted data labeling. Figure Eight technology 
learns from labeled examples that you create and then labels your remaining data.  

• The Hive provides a data labeling solution targeted specifically for computer vision use cases.  

8 Deliver Data to the Training Platform 
Once your dataset is prepared and it’s time to train your model, the next step is to deliver the dataset to 
the training platform. For large deep learning models, the training platform frequently consists of a cluster 
of systems with multiple GPUs running in parallel.  

There are three ways to get data to the training platform: 

• Copy the data into the training platform 
• Allow the training platform to access the data in place 
• Tier the data to the training platform 

Which method you choose can depend on a number of factors, including where your data is stored, how 
big your dataset is, and the capabilities of your training platform.  

Copy Data into the Training Platform 
The most common method for getting data into the training platform, used in 80% to 90% of cases, is 
simply to copy the training dataset into the training platform, as illustrated in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

The dataset is commonly staged in a data lake and copied into the training platform. If you don’t have a 
central data lake, you may choose to copy data from the various data sources into the training platform as 

Figure 5) Copying data into the training platform from a data lake or individual data sources. 

https://www.figure-eight.com/
https://thehive.ai/
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needed. If this is impractical because of the amount of data relative to the memory and/or storage 
capacity of your training platform, another variation is to cache data from the various data sources on fast 
storage near the training platform. NetApp FlexCache is one solution that makes this possible.  

Another variation is to copy data directly into the training platform on ingest. Streaming data brokers such 
as Kafka make this approach simple; a data producer can have multiple data consumers, so you can 
send ingested data simultaneously to a data lake and to your training platform. 

8.1 The Training Platform Accesses Data In Place 
A less common alternative for training is to have the platform access data in place, as shown in Figure 6. 
Again, this access is commonly from a data lake; or it could be directly from other data sources. This is a 
good option when the dataset is stored on high-performance storage and the dataset size exceeds the 
capacity of the training platform. Adding a high-performance cache is an alternative for data sources that 
don’t deliver adequate performance on their own. 

 

 

 

 

 

 

 

 

 

In theory, this makes it possible to share a single copy of the same data for big data analytics, machine 
learning, and deep learning. However, in practice you will probably need to prepare and transform the 
data for deep learning in unique ways, requiring a separate copy. An alternative to a full physical copy is a 
clone of the data, which consumes additional space only as changes are made. For example, with 
NetApp FlexClone®, you can make as many clones as you need while only consuming capacity 
incrementally and with no impact on performance.  

8.2 Tiering Data into the Training Platform  
A final option for delivering datasets for training is to use a tiering solution. This can be a great option 
when you are pulling in data from cold storage. In that situation, you can spend a lot of time and effort just 
getting data where it needs to be. Tiering solutions move data from cold storage transparently when it is 
accessed, eliminating the need for manual or scripted data movement. As a model matures and is 
repeatedly retrained, tiering is a good way to maintain access to previous versions of training datasets. 

For example, NetApp FabricPool can tier data between on-premises and cloud object storage. Depending 
on your training platform, you can tier data directly into the training platform or near it. 

9 Train a Deep Learning Model 
When your dataset has been prepared, it’s time to begin training your deep learning model. Almost 
without exception, training depends on trial and error to deliver good results (and minimize computational 
overhead). 

Figure 6) Training platform accessing data in place.  
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The recipe for training deep learning models involves three main ingredients: 

• Search for the best model architecture 
• Scale computation 
• Accommodate very large training datasets 

Training can involve a lot of experimentation. Data scientists may want to try the latest and most 
innovative model architectures. Infrastructure engineers may test novel parallelization methods—or 
source better GPUs—to scale compute. Data engineers work to prepare new and larger datasets. 

This chapter helps you understand a few basics about the different types of neural networks, as well as 
the deep learning software frameworks that you’ll probably be using. It also introduces a few software 
platforms that can integrate and streamline more of the deep learning process. 

 

9.1 Types of Neural Networks 
If you’re new to deep learning, it’s helpful to know about the different classes of artificial neural networks 
and where they may be applied. Although it’s not necessary to understand how each type of neural 
network is architected to use it, it’s helpful to be familiar with a few basic concepts. A neural network 
consists of an input layer and an output layer, separated by a number of hidden layers.  

 

 

 

 

 

Addressing Deep Learning Computation and I/O Requirements 
The datasets used to train deep learning models are incessantly increasing in size. Larger datasets 
require more compute during training. However, compute requirements for deep learning are 
empirically predictable, so it’s possible to apply deep learning on small datasets to choose the model 
architecture and then refine the model with larger datasets to attain the desired accuracy.  

As deep learning proceeds toward bigger and more complex models, training can run into compute 
bottlenecks, mostly limited by the amount of GPU memory. Alternatives to these challenges include 
upgrading to the latest GPU architectures (with increased memory) or migrating to GPU 
“supercomputers” that combine large numbers of interconnected GPUs acting as a single giant GPU.  

To improve training times, you can explore parallelization techniques such as data parallel, model 
parallel, and pipeline parallelism. The tradeoff is having to revisit the model architecture in order to 
make these approaches work.  

Computational limits can prevent data scientists from using models that are too compute intensive. 
This may mean trading compute performance for statistical accuracy. In use cases such as medical 
imaging, very high accuracy is essential, but for other use cases—such as recommender systems—
a faster response may be preferable to greater accuracy. 

Expect to see continued rapid evolution in approaches to address the problems of dataset size and 
training time. 
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The nodes in the hidden layers of a neural network mostly execute simple mathematical calculations, 
called activation functions. The way the nodes are interconnected, the mathematical functions they use, 
and the breadth and width of the network all contribute to the architecture of the deep neural network and 
determine what type of network you have.  

 
Table 3 shows some of the most commonly used network types, but keep in mind this list is by no means 
exhaustive and new approaches are emerging all the time. Hybrid approaches that combine elements 
from different network types are also in use. 

 
Table 3) Common neural networks and associated use cases. 

Neural Network Type Common Use Cases 

 Convolutional neural network 
(CNN) 

Classify, cluster, and identify 

• Image and video recognition 
• Recommendations 
• NLP 

 Recurrent neural network 
(RNN) 

Long/short-term memory 
(LSTM) 

Recognize patterns in 
sequences of data; may link 
cause and effect 

• NLP 
• Video 
• Text  
• Speech 
• Time-series 

 Generative adversarial network 
(GAN) 

Suited to creative text and 
image tasks 

• Text to image 
• Image-to-image translation 
• Video learning and synthesis 

Figure 7) Simplified illustration of a deep neural network. 
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Neural Network Type Common Use Cases 

 Deep reinforcement learning 
(DRL) 

Can learn how to attain a goal, 
such as playing a game 

• Traffic scheduling in mobile networks 
• Recovery controller for mobile robots 
• Large-scale fleet management 
• Medical imaging 

For schematics and more in-depth descriptions of these and other network types, check out “The mostly 
complete chart of Neural Networks, explained.”  

From a practical standpoint, designing and training a neural network involves a number of considerations, 
including choosing the right connectivity (network type), optimizers, loss functions, and activation 
functions, as well as tuning hyperparameters. 

9.2 Popular Deep Learning Frameworks 
For most teams embarking on a deep learning project, neural network specifics are likely to be a bigger 
consideration than the framework to be used. The framework decision is usually based on experience—
assuming that at least one person has prior experience with any of the frameworks—the specific use 
case you are undertaking, and language support.  

Popular deep learning frameworks include: 

• TensorFlow 
• Keras 
• PyTorch 
• Caffe and Caffe2 
• Microsoft Cognitive Toolkit (CNTK) 
• MXNet 
• DeepLearning4j 
• Chainer 
• Neural Network Libraries 
• PaddlePaddle 

9.3 Deep Learning Software Platforms 
A number of software companies are in business to streamline the process of AI model development to 
help companies gain more value from data more quickly. NetApp is collaborating with several of these 
companies, including the following. 

Deep Learning 

• Allegro.ai. Allegro.ai is developing a deep learning platform that is optimized for computer vision and 
focuses on data preparation, including data labeling, training, and deployment. Allegro.ai supports AI 
frameworks including TensorFlow, PyTorch, Keras, and Caffe. 

• Element AI. Canada-based Element AI was founded to help enterprises succeed with AI. Industry 
focus areas include financial services, retail, cybersecurity, transportation, and logistics.  

Machine Learning 

• H2O.ai. The proliferation of machine learning and deep learning tools can make the field challenging 
to navigate, even for experts. H2O.ai’s mission is to democratize access to AI. Its H2O platform is an 

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://caffe.berkeleyvision.org/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://mxnet.apache.org/
https://deeplearning4j.org/
https://chainer.org/
https://nnabla.org/
https://github.com/PaddlePaddle/Paddle
https://allegro.ai/
https://www.elementai.com/
https://www.h2o.ai/
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open-source machine learning platform that simplifies the use of common data science and machine 
learning algorithms. 

9.4 Model Validation and Evaluation 
The most crucial part of the training process for the data scientist is determining whether or not the model 
has sufficiently learned from the data.  

• Model validation determines whether a model can scale computationally. Will it crash? Does it have 
the necessary compute, network, storage, and security resources? If a model validation fails, then an 
operations engineer needs to revisit the computational requirements of the model. 

• Model evaluation determines a model’s statistical performance. How accurate is the model on live 
data? How accurate was the model for a subset of data? If the model evaluation fails, then the data 
scientist has to go back to the design and look at data provenance and model architecture. 

You may want to maintain a single dedicated cluster for model validation/evaluation and model serving 
/deployment, or two separate clusters. 

10 Model Serving and Deployment 
This is the stage in the pipeline where your deep learning model transitions from development to 
production. At this point, the process becomes more about lifecycle management and less about data 
science.  

Once the initial training has been completed and the model validated and evaluated to your team’s 
satisfaction, it has to be operationalized. This process often includes: 

• Optimizing the model for inferencing performance (using NVIDIA TensorRT for example). 
• Serving the model. Depending on your use case, you may deploy your model on inferencing systems 

at the edge. For instance, autonomous cars have inferencing hardware on board. 
• Periodic retraining with the latest data to ensure that the model remains current. 
• Integration of model output and custom software. 
• Careful management of model versions and training, validation, and testing datasets. 

The scale of the activities and requirements often change at this stage. New requirements include: 

• Multitenant environment. More than one deep learning model may be in the software pipeline. 
Access control is needed to make sure that everyone can’t access everything. 

• Versioning of datasets. You need careful version control of all training, validation, and testing 
datasets. 

• Model management.  
− Each time the model is retrained, a new version is created. 
− You may need different versions of the same model, optimized for different inferencing hardware.  

• Automation. These processes should be automated as much as possible to avoid bottlenecks and 
errors. 

10.1 Platform Options 
As with other parts of the pipeline, a number of AI vendors are building platforms that can help you 
optimize these aspects of the deep learning pipeline. 

• Allegro.ai. NetApp is partnering with Allegro.ai to offer a unified platform that handles all aspects of 
the dataset lifecycle, eliminating concerns about tooling and infrastructure. 

• Datatron offers a platform that focuses on versioning and deployment, monitoring, and management. 

https://developer.nvidia.com/tensorrt
https://allegro.ai/
https://www.datatron.com/index.html
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• Algorithmia automates DevOps for machine learning. Models are deployed as scalable microservices, 
using a serverless model. 

• Skymind. The Skymind Intelligence Layer (SKIL) is designed to help enterprise IT teams manage, 
deploy, and retrain machine learning models at scale. SKIL can import models from various 
frameworks. 

• Dimensional Mechanics’ NeoPulse Framework supports the creation, deployment, and distribution of 
custom AI models on the premises or in the cloud. 

 

  

https://algorithmia.com/
https://skymind.ai/platform
https://dimensionalmechanics.com/
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