

Technical Report

MongoDB on the NetApp Data Fabric
Reference Architecture with AFF, ONTAP Cloud, and
VMware vSphere

Karthikeyan Nagalingam and Rodrigo Nascimento, NetApp

February 2017 | TR-4492

In partnership with

Abstract

This reference architecture showcases an end-to-end solution that efficiently deploys and

protects virtualized MongoDB on the NetApp® Data Fabric. The solution uses NetApp

storage technology and VMware vSphere. The scale-out NetApp AFF array hosts the

MongoDB virtual machines and database. This architecture provides very high performance

with consistent low latency and excellent inline storage efficiency. The solution leverages

NetApp Snap Creator® backup software to achieve instant, space-efficient copies of the

MongoDB environment for use in testing, development, QA, backup, and recovery. This

reference architecture also showcases remote replication to the NetApp ONTAP® Cloud

storage operating system and NetApp Private Storage in Amazon Web Services for remote

backups and disaster recovery.

2 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

TABLE OF CONTENTS

1 Introduction ... 4

2 Solution Overview .. 4

2.1 NetApp Data Fabric ..5

2.2 NetApp All Flash FAS ...5

2.3 ONTAP Cloud ...6

2.4 NetApp Private Storage ..6

2.5 OnCommand Cloud Manager ...6

2.6 Snap Creator Framework ..6

3 Solution Design .. 6

3.1 MongoDB Architecture ..7

4 Solution Validation ... 11

4.1 Building the MongoDB Sharding Cluster ... 11

4.2 Backup and Restore with NetApp Snap Creator ... 11

4.3 MongoDB Cloning for Dev/Test and QA with Snap Creator .. 19

4.4 Replication to Cloud ONTAP in AWS for Disaster Recovery .. 21

4.5 Disaster Recovery Validation to Cloud .. 21

4.6 MongoDB with NetApp Private Storage .. 23

4.7 Performance and Certification Validation .. 24

4.8 Performance Validation with YCSB ... 24

4.9 Workloads Used .. 24

4.10 Storage Architecture Used for YCSB .. 25

4.11 YCSB Performance Testing .. 26

4.12 Inline Efficiency ... 29

4.13 Deduplication .. 30

4.14 Compression ... 30

5 Summary ... 32

Appendix A: Python Scripts .. 33

Appendix B: MongoDB Operations ... 34

Acknowledgements .. 46

References ... 46

LIST OF TABLES

Table 1) Components of the solution architecture. ...8

3 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

LIST OF FIGURES

Figure 1) End-to-end solution for MongoDB on the NetApp Data Fabric. ...5

Figure 2) Shards spread across multiple servers. ..7

Figure 3) Query routers (mongos instances) using metadata to route data to shards. ...8

Figure 4) Storage layout on NetApp A300. ... 10

Figure 5) Snap Creator backup operation. ... 13

Figure 6) Views of the replicated MongoDB database from NetApp OnCommand System Manager. 22

Figure 7) Views of the replicated MongoDB database from ONTAP Cloud Manager. .. 23

Figure 8) Replica set used for the validation. ... 25

Figure 9) Storage architecture used for YCSB. .. 25

Figure 10) Storage layout on A300 and layers of the file system. .. 26

Figure 11) Workload A: 50% read, 50% update. .. 27

Figure 12) Workload B: 95% read, 5% update. .. 27

Figure 13) Workload C: 100% read. ... 28

Figure 14) Workload customized C: 100% read, FCP throughput. ... 28

Figure 15) Workload customized C: 100% read, FCP latency. ... 29

Figure 16) Workload customized C: 100% reads, read throughput in GBps. ... 29

Figure 17) Reducing storage capacity requirements through deduplication. .. 30

Figure 18) Volume efficiency statistics from Perfstat. ... 31

Figure 19) Data reduction of over 15:1 with inline deduplication and inline compression. .. 32

4 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

1 Introduction

MongoDB is a very popular open-source scale-out NoSQL database. It powers modern big data analytics

applications that require low latency for reads and writes, high availability, and advanced data

management. Key use cases for MongoDB include real-time analytics, product catalogs, content

management, and mobile applications.

This reference architecture showcases a validated end-to-end solution design for efficiently deploying a

virtualized scale-out MongoDB NoSQL database on the NetApp Data Fabric and VMware vSphere. In this

solution, the scale-out NetApp All Flash FAS (AFF) array hosts MongoDB virtual machines (VMs) and

databases. Backup and disaster recovery services are provided by a NetApp ONTAP Cloud software-

defined storage solution in Amazon AWS as well as NetApp Private Storage. The NetApp solution offers

the following key benefits that enable deployment of MongoDB mission-critical applications:

 Predictable high performance with consistent low latency as compared to direct-attached storage,
providing excellent response time for the most demanding analytics applications built on MongoDB

 Inline efficiency, achieved by inline deduplication and compression to help minimize the flash storage
required for MongoDB

 Instant space-efficient and cost-efficient database cloning for rapid setup of dev/test or QA
environments without the need to buy new storage

 Backup and recovery based on space-efficient NetApp Snapshot® technology and remote replication
to the cloud

 Scalability provided by the scale-up and scale-out AFF array, which can modularly scale storage with
MongoDB

 Nondisruptive operations with high availability to deliver maximum uptime and consistent
performance, specifically during drive failure

 Deployment of MongoDB in a heterogeneous environment, providing flexibility and additional cost
savings

 Single-interface management using Snap Creator with the MongoDB plug-in

2 Solution Overview

In the end-to-end solution shown in Figure 1, virtualized MongoDB is hosted on NetApp A300 storage and

VMware vSphere 6. The NetApp AFF array provides low latency and inline deduplication and

compression to deliver high performance and reduce flash storage requirements. NetApp Snap Creator

backup software provides the framework to invoke instant NetApp Snapshot copies and clones for

making zero-cost copies of the entire environment and for use in backup and recovery. Snap Creator also

provides the capability to manage remote replication of the entire environment to NetApp ONTAP Cloud

instances that run in Amazon Web Services (AWS). The data that is replicated in AWS can be used for

disaster recovery and in dev/test environments.

5 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 1) End-to-end solution for MongoDB on the NetApp Data Fabric.

2.1 NetApp Data Fabric

The Data Fabric is NetApp’s vision for the future of data management. A Data Fabric seamlessly

connects different data management environments across disparate clouds into a cohesive, integrated

whole. The NetApp Data Fabric helps organizations maintain control and choose the way they manage,

secure, protect, and access their data across the hybrid cloud, no matter where it is.

Although a Data Fabric evolves constantly, organizations can start taking advantage of it today by using

NetApp technologies that enable data management and seamless data movement across the hybrid

cloud. For more information about the Data Fabric powered by NetApp, see WP-7218: NetApp Data

Fabric Architecture Fundamentals: Building a Data Fabric Today.

2.2 NetApp All Flash FAS

NetApp All Flash FAS (AFF) is an enterprise-grade all-flash array that offers powerful benefits:

 High performance at scale

 Inline deduplication and compression

 Modular scale-out

 Best-in-class data management

 Deep application integration

These capabilities, coupled with MongoDB, can help you build a highly scalable, high-performing, and

cost-efficient analytics and scale-out database solution.

The key benefits of AFF also include the capability to:

 Accelerate databases with 4 to 12 times higher IOPS and 20 times faster response, powered by
NetApp Data ONTAP® FlashEssentials

 Reduce SSD storage fivefold to tenfold on average by using data reduction technologies

http://www.netapponcloud.com/hubfs/Data-Fabric/datafabric-wp.pdf
http://www.netapponcloud.com/hubfs/Data-Fabric/datafabric-wp.pdf

6 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

 Scale out to 24 storage nodes in a cluster and move data nondisruptively between flash and hard disk
drive tiers

 Safeguard your data with an integrated data protection suite that is included in the system and that
has a starting cost as low as $25,000

 Set up your system easily

For more information about AFF, see NetApp AFF.

2.3 ONTAP Cloud

ONTAP Cloud for Amazon Web Services is a software-only storage appliance in AWS that is built on

ONTAP. ONTAP Cloud delivers leading universal storage management platforms, from on-premises data

centers to the cloud. It includes multiple storage-consumption models, providing the flexibility that allows

you to truly use just what you need, when you need it. Rapid point-and-click deployment from NetApp

OnCommand® Cloud Manager allows you to deploy enterprise cloud storage on AWS in minutes. For

more information about ONTAP Cloud for AWS, see NetApp ONTAP Cloud for Amazon Web Services.

2.4 NetApp Private Storage

NetApp Private Storage offers a family of storage solutions to help customers optimize their data use

through public cloud providers. For workloads that require high performance and capacity, or for when

you want to maintain data control while using the public cloud, NPS is the ideal choice.

2.5 OnCommand Cloud Manager

OnCommand Cloud Manager provides storage management for your hybrid cloud environment. It

simplifies the installation and resource assignment of all your cloud storage instances and is the

deployment environment for ONTAP Cloud. Cloud Manager also eases the day-to-day requirements of

your ONTAP Cloud and NPS for public cloud environment, including configuring, provisioning, and

monitoring your active virtual and hardware storage nodes.

Cloud Manager key features include:

 Simplifying configuration and deployment of ONTAP Cloud

 Offering a central point of control for all ONTAP Cloud instances

 Facilitating hybrid environments that include ONTAP Cloud and NetApp Private Storage

2.6 Snap Creator Framework

Snap Creator uses NetApp Snapshot technology to provide application-consistent data protection for both

physical and virtualized environments. It also operates with infrastructure-as-a-service cloud

environments. It provides a centralized solution for backing up critical information, and it integrates with

existing application architectures to support data consistency and reduce operating costs. It enables you

to invoke remote replication for use in disaster recovery. For virtualized MongoDB deployments, Snap

Creator provides the capability for instant backup and recovery of MongoDB VMs and databases. It also

enables you to create rapid clones of the virtualized MongoDB environment for use in dev/test and QA

environments. For more information about Snap Creator, see Snap Creator Framework.

3 Solution Design

This section describes the MongoDB architecture, including its components and layout. It also describes

the validated architecture and the storage architecture.

http://www.netapp.com/us/products/storage-systems/all-flash-fas/
http://www.netapp.com/us/media/ds-3618.pdf
http://www.netapp.com/us/products/management-software/snapcreator-framework.aspx

7 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

3.1 MongoDB Architecture

Sharding, or horizontal scaling, divides the dataset and distributes the data over multiple servers, or

shards. Each shard is an independent database. Collectively, the shards make up a single logical

database. Figure 2 shows how shards in a collection can be spread across multiple databases.

Figure 2) Shards spread across multiple servers.

Shards store data. In a production sharded cluster, each shard is a replica set. This strategy provides

high availability and data consistency.

Query routers, or mongos instances, interface with client applications and direct operations to the

appropriate shard or shards. A client sends requests to a mongos, which then routes the operations to the

shards and returns the results to the clients. A sharded cluster can contain more than one mongos to

divide the client request load. For this reason, most sharded clusters have more than one mongos.

Configuration servers (config servers) store the cluster’s metadata, which contains a mapping of the

cluster’s dataset to the shards. The query router uses this metadata to target operations to specific

shards, as Figure 3 shows.

8 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 3) Query routers (mongos instances) using metadata to route data to shards.

Note: Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica set.
The replica set config servers must run the WiredTiger storage engine. MongoDB 3.2 deprecates
the use of three mirrored mongod instances for config servers.

Validated Architecture

This solution uses a MongoDB sharding cluster that is virtualized on VMware vSphere 6. In keeping with

the MongoDB recommendation for a production setup, during testing we deployed a sharding cluster

consisting of two shards. Each shard held a subset of a collection’s data. In this solution, each shard is a

replica set. Three MongoDB config servers and two query router (mongos) instances are used for the

sharding cluster, and the MongoDB setup is configured with the WiredTiger storage engine. The

WiredTiger storage engine is responsible for managing how data is stored, both in memory and on disk,

and for creating the data files in the --dbpath or storage.dbPath. For more information, see

WiredTiger Storage Engine and Production Cluster Architecture.

Storage Architecture

NFS datastores are NetApp volumes that are accessed through the NFS protocol. Six of these NFS

datastores are provisioned on the NetApp A300 all-flash array. The NetApp Virtual Storage Console

(VSC) plug-in in VMware vCenter is used to host the various components of the architecture. Table 1 lists

these components.

Table 1) Components of the solution architecture.

Serial Number NetApp Volume MongoDB
Role

Number of
Servers with
MongoDB
Role

Six NetApp
Volumes for
VMware
Datastores
(NFS)

VMware
Provision

1 Operating systems
images volume
(example:

Query/router
servers

2 2 volumes
shared for all

Eager zero
thick (.vmdk)

https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/sharded-cluster-architectures-production/

9 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Serial Number NetApp Volume MongoDB
Role

Number of
Servers with
MongoDB
Role

Six NetApp
Volumes for
VMware
Datastores
(NFS)

VMware
Provision

vol_vmOS_01 and
vol_vmOS_02)

operating
systems

2 Operating systems
images volume
(example:
vol_vmOS_01 and
vol_vmOS_02)

Config servers 3 2 volumes
shared for all
operating
systems

Eager zero
thick (.vmdk)

3 Operating systems
images volume
(example:
vol_vmOS_01 and
vol_vmOS_02)

Primary shard
servers

2 2 volumes
shared for all
operating
systems

Eager zero
thick (.vmdk)

4 Operating systems
images volume
(example:
vol_vmOS_01 and
vol_vmOS_02)

Secondary
shard servers

4 2 volumes
shared for all
operating
systems

Eager zero
thick (.vmdk)

5 Primary databases
volume (example:
vol_mdbdata_p_01
and
vol_mdb_data_p_02)

Primary shard
database
servers

2 2 volumes
shared for all
operating
systems

Eager zero
thick (.vmdk)

6 Secondary
databases volume
(example:
vol_mdbdata_s_01
for first sharding
secondary servers
and
vol_mdbdata_s_02
for second sharding
secondary servers)

Secondary
shard
database
servers

4 2 volumes
shared for all
operating
systems

Eager zero
thick (.vmdk)

Figure 4 shows the storage layout.

10 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 4) Storage layout on NetApp A300.

11 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

4 Solution Validation

This section describes the validation of the end-to-end solution, focusing specifically on the key highlights

listed in section 1.

4.1 Building the MongoDB Sharding Cluster

Deployment of the MongoDB sharding cluster involves the following tasks:

1. Check the mounted partitions for the MongoDB database.

2. Check and run the shard cluster members in the MongoDB sharding cluster; create the required
folders and provide the required permissions.

Note: The mongod process starts with default ports (27018 and 28018). Alternatively, you can
specify ports.

3. Verify that all config servers in MongoDB folders such as logpath (/mongodb/data/configdb) and

dbpath (/data/db) are created. Verify that they have mongodb user permission (700) and that the

mongod process is running in fork mode and on the right port (27019).

4. Start the mongos process in the MongoDB router or application server and verify that the port (27017)
is listening.

5. Initiate the replication set by connecting to the MongoDB shard primary server from the MongoDB
application server.

6. Check the replication set status from the shard member.

7. Add a shard from the application server. Try to add the same shard from another application server
by connecting to a replication set member. You should get a message that the shard already exists.

8. Check the sharding status from the application server.

9. Add another shard into an existing sharding cluster.

10. Check the MongoDB sharding cluster status by running the sh.status() command from the

MongoDB application server.

Note: For the detailed MongoDB steps, see Appendix B: MongoDB Operations.

4.2 Backup and Restore with NetApp Snap Creator

This solution leverages the NetApp Snap Creator framework to back up, restore, and clone the virtualized

MongoDB database environment by using space-efficient NetApp Snapshot technology. In our testing, we

were able to achieve NetApp Snapshot backups for the complete environment in less than one minute.

Restore of the NetApp volumes that hosted the MongoDB database also took less than one minute.

In this solution, MongoDB uses the WiredTiger storage engine.

For our testing, we configured Snap Creator to carry out the following operations:

1. Stop the balancer.

1. Perform an fsync and lock, if necessary.

Note: The WiredTiger storage engine does not require you to perform an fsync and to lock every
shard for writes. If you use the MMAPv1 storage engine, however, you must perform an fsync
and lock every shard for writes.

2. Make NetApp Snapshot copies of all volumes used in the configuration.

3. Unlock the databases for writes, if necessary.

Note: The WiredTiger storage engine does not require you to unlock the databases for writes. If you
use the MMAPv1 storage engine, however, you must unlock the databases for writes.

4. Restart the balancer.

12 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Note: The scripts used in the testing are shown in the appendixes.

Snap Creator Backup

This section describes how Snap Creator was configured during our testing to back up the MongoDB

shard cluster database. Snap Creator is a flexible framework that has the flexibility to include MongoDB-

specific quiesce and unquiesce scripts before and after the NetApp Snapshot backup is created. The

NetApp Snapshot backup is immaterial to the size of the database. Only seconds are required to create

the NetApp Snapshot backup.

We followed the steps in this procedure to configure Snap Creator for our testing:

1. Install the Snap Creator server in the Snap Creator VM.

2. Install the Snap Creator agent in the MongoDB router or application server.

Note: This step is required because the Snap Creator server communicates to the MongoDB
database through the Snap Creator agent. The Snap Creator agent communicates with
MongoDB as a client. Python scripts are executed on the mongodb database in this same
way for quiesce and unquiesce operations.

3. In the Snap Creator UI, create the MongoDB profile and configure the following settings:

a. Configure the plug-in type as None.

b. Configure the Snap Creator agent on one of the MongoDB application servers.

c. Select the transport https with port 443.

d. Select the storage virtual machine (SVM, formerly Vserver) IP and provide the SVM user name
and password.

e. Include four MongoDB database volumes (primary and secondary):

 n1_mdbdata_p_01

 n1_mdbdata_s_02

 n2_mdbdata_p_02

 n2_mdbdata_s_01

f. Provide the Snapshot copy name and indicate the policies:

 Daily: 30

 Hourly: 24

 Weekly: 7

 Monthly: 12

Note: The default value is monthly, but you can customize the policies to fit your requirements.

g. Provide this application quiesce command: APP_QUIESCE_CMD01=/usr/bin/python2.7

/usr/local/bin/wait-for-cleared-locks.py mdb-ms-1 27017.

h. Provide this application unquiesce command: APP_UNQUIESCE_CMD01=/usr/bin/python2.7

/usr/local/bin/start-balancer.py mdb-ms-1 27017.

i. Provide this preexit command: PRE_EXIT_CMD01=/usr/bin/python2.7

/usr/local/bin/wait-for-cleared-locks.py mdb-ms-1 27017.

Figure 5 shows the Snap Creator backup operation for the MongoDB database.

13 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 5) Snap Creator backup operation.

Snap Center enables you to back up very large MongoDB databases in seconds. Snap Creator has an

option to schedule the backup and notify you about the job status.

Snap Creator Restore

As a database’s size increases, problems arise in backing it up and restoring it. NetApp Snapshot

technology provides the simplest and most efficient way to back up and restore a distributed database of

any size. If backups are based on Snapshot copies, the time required to restore a large database

composed of multiple shards is related more to the time spent in stopping and starting the database

processes than to the act of restoring the data itself. The restore of a Snapshot backup often takes only

seconds, or minutes at most.

The following example from our testing shows how to remove the c7 collection, stop all mongodb

processes across all the shards, unmount the /data file systems, restore the volumes by using Snap

Creator, remount the file systems, remove the lock files, and restart all processes:

1. Before restore, check the database and its documents from one of the application server.

Note: The c7 collection has more documents than the number of documents at the time of backup. The
following counts are queried before the restore process begins.

[mongodb@mdb-ms-1 ~]$ mongo mdb-ms-1:27017/admin

MongoDB shell version: 3.0.7

connecting to: mdb-ms-1:27017/admin

mongos> show dbs;

admin (empty)

bulkdb2 0.000GB

config 0.016GB

db1 26.282GB

db2 39.771GB

14 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

db3 44.171GB

db4 34.444GB

db5 34.416GB

db6 34.225GB

db7 71.155GB

newbulkdb 0.000GB

posts 0.000GB

mongos> use db7;

switched to db db7

mongos> show collections;

c7

mongos> db.c7.count();

144569144

mongos> db.c7.drop();

true

mongos> db.c7.count();

0

mongos>

2. Stop the first replica set (mongod) process by using the init script. Alternatively, you can use the kill

command to stop the mongod process first sharding or replica set members (mdb-srv-1, mdb-srv-

10, mdb-srv-11) and unmount the database volume.

 From mdb-srv-1:

[mongodb@mdb-srv-1 ~]$ pkill mongod

[mongodb@mdb-srv-1 ~]$ netstat -lntp

(No info could be read for "-p": geteuid()=8000 but you should be root.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

tcp6 0 0 :::22 :::* LISTEN -

tcp6 0 0 ::1:631 :::* LISTEN -

tcp6 0 0 ::1:25 :::* LISTEN -

[mongodb@mdb-srv-1 ~]$ umount /data

umount: /data: umount failed: Operation not permitted

[mongodb@mdb-srv-1 ~]$ logout

[root@mdb-srv-1 ~]# umount /data

[root@mdb-srv-1 ~]#

Note: You can kill the mongod process from the mdb-srv-10 and mdb-srv-11 servers in the
same way.

3. Stop the second replica set (mongod) process by using the init script. Alternatively, you can use

the kill command to stop the mongod process second sharding or replica set members (mdb-srv-2,

mdb-srv-20, mdb-srv-21) and unmount the database volume.

 From mdb-srv-2:

[mongodb@mdb-srv-2 ~]$ pkill mongod

[mongodb@mdb-srv-2 ~]$ netstat -lntp

(No info could be read for "-p": geteuid()=8000 but you should be root.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

tcp6 0 0 :::22 :::* LISTEN -

tcp6 0 0 ::1:631 :::* LISTEN -

tcp6 0 0 ::1:25 :::* LISTEN -

[mongodb@mdb-srv-2 ~]$ logout

[root@mdb-srv-2 ~]# umount /data

[root@mdb-srv-2 ~]#

Note: You can kill the mongod process from the mdb-srv-20 and mdb-srv-21 servers in the
same way.

15 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

4. Delete/remove the existing harddrive (MongoDB database volumes) from the VMs, which are
mounted in both shard cluster members, including the primary and secondary servers, for

database/dbpath.

5. Restore all database volumes by using Snap Creator for each database volume.

Note: This screenshot shows only one volume (n1_mdbdata_p_01), but volumes
n1_mdbdata_s_02, n2_mdbdata_p_02, and n2_mdbdata_s_01 must all be restored.

6. Reconnect the restored database volumes as existing drives to the MongoDB sharding or replica set
primary and secondary servers.

16 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

New HardDisk Added

Select an Exising HardDisk
from Restored Volume

7. Mount the volumes.

8. Remove the mongod.lock file from the mounted MongoDB database volumes.

9. Start the mongod process on the sharding cluster servers.

10. Verify that the mongod ports (27018 and 28018) are listening.

[root@mdb-srv-1 ~]# fdisk /dev/sdb

Disk /dev/sdb: 1088.5 GB, 1088516510720 bytes, 2126008810 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0xd35931be

 Device Boot Start End Blocks Id System

/dev/sdb1 2048 2126008809 1063003381 83 Linux

[root@mdb-srv-1 ~]# mount /data

[root@mdb-srv-1 ~]# su - mongodb

Last login: Wed Dec 23 09:21:59 EST 2015 on pts/1

[mongodb@mdb-srv-1 ~]$ cd /data/db_wt/

[mongodb@mdb-srv-1 db_wt]$ rm -f mongod.lock

[mongodb@mdb-srv-1 db_wt]$ mongod --replSet shard1/mdb-srv-10,mdb-srv-11 --journal --rest --

shardsvr --fork --storageEngine wiredTiger --dbpath /data/db_wt --logpath

/mongodb/data/mongod.log --directoryperdb

2015-12-23T09:24:46.629-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-12-23T09:24:46.630-0500 I CONTROL ** enabling http interface

about to fork child process, waiting until server is ready for connections.

17 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

forked process: 32080

child process started successfully, parent exiting

[mongodb@mdb-srv-1 db_wt]$ netstat -lntp

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:27018 0.0.0.0:* LISTEN 32080/mongod

tcp 0 0 0.0.0.0:28018 0.0.0.0:* LISTEN 32080/mongod

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

tcp6 0 0 :::22 :::* LISTEN -

tcp6 0 0 ::1:631 :::* LISTEN -

tcp6 0 0 ::1:25 :::* LISTEN -

[mongodb@mdb-srv-1 db_wt]$

Note: Repeat the same procedure on mdb-srv-10, mdb-srv-11, mdb-srv-2, mdb-srv-20, and
mdb-srv-srv-21 servers. Mount the restored volume, remove the mongod.lock file, and
start the mongod process for the replication set.

11. Check the sharding status in the restored database and the document values.

[mongodb@mdb-ms-1 ~]$ mongo mdb-ms-1:27017/admin

MongoDB shell version: 3.0.7

connecting to: mdb-ms-1:27017/admin

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 { "_id" : "shard2", "host" : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

}

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 0

 Migration Results for the last 24 hours:

 No recent migrations

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

 { "_id" : "newbgdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "test", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "newdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "ndb", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "mdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "ldb", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "newbulkdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "bulkdb2", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "posts", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db1", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db2", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db3", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db4", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db5", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db6", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db7", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "netbgdb", "partitioned" : true, "primary" : "shard2" }

mongos> show dbs;

admin (empty)

bulkdb2 0.000GB

config 0.016GB

db1 26.282GB

db2 39.771GB

18 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

db3 44.171GB

db4 34.894GB

db5 34.869GB

db6 34.674GB

db7 71.155GB

db8 849.595GB

newbulkdb 0.000GB

posts 0.000GB

mongos> use admin

switched to db admin

mongos> db.runCommand({enableSharding: "db5"})

{ "ok" : 1 }

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 { "_id" : "shard2", "host" : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

}

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 0

 Migration Results for the last 24 hours:

 No recent migrations

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

 { "_id" : "newbgdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "test", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "newdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "ndb", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "mdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "ldb", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "newbulkdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "bulkdb2", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "posts", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db1", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db2", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db3", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db4", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db5", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db6", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db7", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "netbgdb", "partitioned" : true, "primary" : "shard2" }

mongos>

12. Check the db7 database and find the number of documents in the c7 collection.

[mongodb@mdb-ms-1 ~]$ mongo mdb-ms-1:27017/admin

MongoDB shell version: 3.0.7

connecting to: mdb-ms-1:27017/admin

mongos> show dbs;

admin (empty)

bulkdb2 0.000GB

config 0.016GB

db1 26.282GB

db2 39.771GB

db3 44.171GB

db4 34.723GB

db5 34.698GB

db6 34.505GB

db7 71.155GB

db8 849.595GB

19 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

newbulkdb 0.000GB

posts 0.000GB

mongos> use db7

switched to db db7

mongos> show collections;

c7

mongos> db.c7.count();

144569144

mongos>

This example demonstrates that a MongoDB database can be restored by using Snap Creator and

leveraging NetApp Snapshot copies and NetApp SnapRestore® technology. The c7 collection is displayed

with the number of documents from the db7 database.

4.3 MongoDB Cloning for Dev/Test and QA with Snap Creator

Snap Creator enables you to build preproduction or development environments from existing production

NetApp Snapshot backups. By using FlexClone® flexible clones, you can present volumes that have

Snapshot copies to any clone host. This technology enables you to build dev/test environments quickly

without having to double the amount of storage required. FlexClone clones are a fast, scalable, and

efficient way to provide dev/test environments on demand.

The following example demonstrates how to clone all databases across all shard servers into new shard

servers. In this example, the operations system volumes are also cloned.

1. Create the Snap Creator profile for database volumes and for operating system volumes.

2. Using Snap Creator, create FlexClone volumes for operating system and database volumes from a
specific Snapshot copy.

3. Create a datastore that includes the cloned operating system and database volumes in the VMware
servers.

20 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

4. Create the cloned VM from the datastore based on the .vmx file:

a. Select the datastore created in step 3 above.

b. Find the .vmx file.

c. Register the VM.

d. Create the cloned VM name in the following format: cl_<old VM name>.

e. Select the VMware cluster and server to finish the cloned VM creation.

5. The cloned (newly registered) VM accesses the database.vmdk file from another database cloned

volume; verify the .vmdk file is identified as an existing disk. If it is not, then in the cloned VM, select
Edit > Settings > Remove disk > Confirm.

Note: Make sure that you do not remove the disk from the repository.

Note: Remove the .lck<16 alphanumeric characters> files from the database cloned
volume. Mount the cloned volume in the VMware or Linux server and remove the .lck files,
as shown in the following example:

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce] df -h

/vmfs/volumes/cl_mongodb_config_n1_mdbdata_p_01

Filesystem Size Used Available Use% Mounted on

NFS 1.0T 49.6G 974.4G 5% /vmfs/volumes/cl_mongodb_config_n1_mdbdata_p_01

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce]

[root@stlrx300s8-9:~] cd /vmfs/volumes/cl_mongodb_config_n1_mdbdata_p_01

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce] ls

mdb-srv-1

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce] cd mdb-srv-1/

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce/mdb-srv-1] ls -la

total 1067189496

drwxr-xr-x 2 root root 4096 Dec 18 2015 .

21 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

drwxr-xr-x 5 root root 4096 Dec 18 2015 ..

-rwxrwxr-x 1 root root 84 Dec 18 14:41 .lck-be54694500000000

-rwxrwxr-x 1 root root 84 Dec 18 2015 .lck-be546a4500000000

-rw------- 1 root root 1088516510720 Dec 18 14:41 mdb-srv-1-flat.vmdk

-rw------- 1 root root 475 Nov 22 17:51 mdb-srv-1.vmdk

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce/mdb-srv-1] rm -fr .lck-be546

.lck-be54694500000000 .lck-be546a4500000000

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce/mdb-srv-1] rm -fr .lck-be546

.lck-be54694500000000 .lck-be546a4500000000

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce/mdb-srv-1] rm -fr .lck-be546*

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce/mdb-srv-1] ls -la

total 1067189488

drwxr-xr-x 2 root root 4096 Dec 18 2015 .

drwxr-xr-x 5 root root 4096 Dec 18 2015 ..

-rw------- 1 root root 1088516510720 Dec 18 14:41 mdb-srv-1-flat.vmdk

-rw------- 1 root root 475 Nov 22 17:51 mdb-srv-1.vmdk

[root@stlrx300s8-9:/vmfs/volumes/24631f70-b7e80cce/mdb-srv-1]

6. Start (power on) the cloned VMs.

7. Change the IP address of the cloned hosts and update /etc/hosts.

Note: In cloned VMs, NetApp recommends that you use the same host names with different IP
addresses.

8. Restart the MongoDB config, application, and replica set or sharding servers with the new IP
addresses from the cloned VMs.

This procedure creates a working cloned copy of the production MongoDB database. The cloned copy is

isolated and available to use for writes, troubleshooting, development, or test. Because its storage is

based on FlexClone technology, no additional storage is used in the process.

4.4 Replication to Cloud ONTAP in AWS for Disaster Recovery

NetApp ONTAP Cloud for AWS is a software-only storage appliance that runs the NetApp clustered Data

ONTAP storage operating system in the cloud. ONTAP Cloud manages general-purpose Amazon Elastic

Block Storage (GP2 EBS) with ONTAP and provides enterprise-class features on top of EBS. This

configuration provides access to NFS, CIFS, and iSCSI protocol support as well as to a rich feature set

that enhances the management and efficiency of your storage. You also have access to industry-leading

technologies such as NetApp SnapMirror® and NetApp SnapVault® data replication, which enable

seamless connectivity for hybrid cloud resources.

ONTAP Cloud is launched and managed through the NetApp OnCommand Cloud Manager application.

Cloud Manager is a web front end that enables the deployment and management of AWS public cloud

resources associated with ONTAP Cloud. Cloud Manager provides a flexible, intuitive interface for

activities such as deployment of ONTAP Cloud working environments, intelligent allocation of additional

AWS EBS storage, creation of NetApp flexible volumes, and so on.

Cloud Manager can be deployed several different ways, including:

 Into your local data center from the NetApp Support software downloads site

 Into an existing EC2 instance that runs a supported version of Windows

 From the AWS marketplace from an Amazon machine image into an EC2 instance

For more information, see the OnCommand Cloud Manager 1.0 Installation and Setup Guide and the

OnCommand Cloud Manager 1.0 User Guide.

4.5 Disaster Recovery Validation to Cloud

This solution protects the MongoDB database data by using SnapMirror to replicate it into ONTAP Cloud.

The replication requires the following tasks:

1. In Cloud Manager, record the IP address of the intercluster LIF for the ONTAP Cloud instance.

http://mysupport.netapp.com/
https://library.netapp.com/ecm/ecm_download_file/ECMLP2645523
https://library.netapp.com/ecm/ecm_download_file/ECMLP2645446

22 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

2. Create a cluster peer relationship on ONTAP.

3. Create the peer relationship on the ONTAP Cloud instance.

4. Configure and initialize a SnapMirror relationship.

Note: Figure 6 shows the replicated MongoDB database as viewed from the NetApp OnCommand
System Manager. Figure 7 shows the same information as viewed from the NetApp ONTAP
Cloud Manager.

Figure 6) Views of the replicated MongoDB database from NetApp OnCommand System Manager.

23 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 7) Views of the replicated MongoDB database from ONTAP Cloud Manager.

5. Verify that the SnapMirror status says snapmirrored and the relationship status says healthy.

6. Enable disaster recovery for this SnapMirror relationship by completing the following tasks:

a. Build the Linux operating system VM instance on AWS and install the MongoDB database on that
instance just as on the production database.

b. In NetApp ONTAP Cloud storage, quiesce and break the SnapMirror relationship.

c. Create the FlexClone volume from the destination volume.

d. Mount the primary and secondary database volumes in the appropriate operating system
instances.

e. Start the config servers, the primary and secondary sharding servers, and the application or

query server mongodb processes by using the init script or CLI commands.

f. Verify that the database and the documents are uploaded to the SnapMirror break point and that
the new disaster recovery database is still writable.

4.6 MongoDB with NetApp Private Storage

This solution protects the MongoDB database data by using SnapMirror to replicate it into NetApp Private

Storage (NPS) and access the data from a cloud provider such as AWS or Azure. The replication requires

the following tasks:

1. In our lab, we have private access to AWS from our lab network. We configure and initialize the
SnapMirror relationship between mongodb data volumes and NPS volumes.

2. Verify that the SnapMirror status says snapmirrored and the relationship status says healthy.

24 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

3. Enable disaster recovery for this SnapMirror relationship by completing the following tasks:

a. Build the Linux operating system VM instance on AWS and install the MongoDB database on that
instance just as on the production database.

b. In NetApp Private Storage, quiesce and break the SnapMirror relationship.

c. Create the FlexClone volume from the destination volume.

d. Mount the primary and secondary database volumes in the appropriate operating system
instances.

e. Start the config servers, the primary and secondary sharding servers, and the application or

query server mongodb processes by using the init script or CLI commands.

f. Verify that the database and the documents are uploaded to the SnapMirror break point and that
the new disaster recovery database is still writable.

4.7 Performance and Certification Validation

Certification Validation

In order to validate the interoperability of NetApp storage with MongoDB, we completed the MongoDB

certification process. For the certification validation, we used an A300 all-flash array. The A300 was

connected through a Fibre Channel switch to an x86 server with 24 cores and 128GB RAM, running the

RHEL 7.1 operating system. We installed MongoDB Enterprise v3.2 on the RHEL server.

Using this configuration, the NetApp storage system successfully passed all MongoDB certification tests

and is currently listed as a MongoDB certified platform.

For more information about MongoDB certification with NetApp storage controllers, see the MongoDB

NetApp partner webpage.

In addition to the certification testing, we also validated MongoDB performance with NetApp storage using

the YCSB test framework. The following sections provide more details about the performance test

configuration and results.

4.8 Performance Validation with YCSB

Yahoo! Cloud Serving Benchmark (YCSB) is a framework and common set of workloads for evaluating

the performance of different key-value and cloud serving stores. It has two components:

 The YCSB client, an extensible workload generator

 The core workloads, a set of workload scenarios to be executed by the generator

4.9 Workloads Used

Out of six different core workloads, we chose workloads A, B, C and customized C.

Workload A

Workload A is an update heavy workload that has a mix of 50/50 reads and writes. An application

example is a session store recording recent actions.

Workload B

Workload B is a read mostly workload and has a 95/5 mix of reads and writes. Application examples are

photo tagging or adding a tag as an update, but most operations are to read tags.

Workload C

https://www.mongodb.com/partners/netapp
https://www.mongodb.com/partners/netapp

25 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Workload C is a read only workload with 100% read. An application example is a user profile cache,

where profiles are constructed elsewhere such as Hadoop deployments.

Workload Customized C

The main purposes of YCSB is testing the database performance. It has not been designed to stress the

I/O layer of the database. Workload customized C was necessary to demonstrate what level of

throughput and response time you can expect from an AFF A300 if it is heavily loaded with application I/O

requests.

Figure 8) Replica set used for the validation.

In our validation, we have a database with 700GB of data. Each document is 1,000 bytes in size with 10

fields per document. The data is loaded by the YCSB tool.

4.10 Storage Architecture Used for YCSB

We used three physical servers to build a primary, secondary, secondary (PSS) MongoDB replica set.

Figure 9) Storage architecture used for YCSB.

Each server has the following configurations:

 256GB RAM

 2 Intel Xeon E5-2630 v2 at 2.60GHz (24 cores total)

 2 Fibre Channel 16Gbps ports

 MongoDB servers installed with Red Hat Enterprise Linux 7.2

26 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

 Brocade Fibre Channel switch

 Storage controller is AFF A300 HA pair, and each controller has:

 16 cores

 128GB of cache

 8GB of NVMEM

 1TB Flash Cache™

 4 Fibre Channel 16Gbps ports

 1/2 DS2246 with 24 800GB SSDs

For our testing, we built the file system for replica set in the following way:

1. We created four volumes per A300 storage controller, so there were eight volumes total. Each
volume size is 386GB.

2. Each volume had three LUNs with a LUN size of 128GB. We provisioned one LUN in each volume to
the primary server and the remaining two LUNs to the secondary servers.

3. We created a logical volume group wrapping up eight LUNs per server; then one striped logical
volume was created across the eight LUNs in the volume group.

4. The XFS file system was created on top of the striped logical volume.

Figure 10) Storage layout on A300 and layers of the file system.

4.11 YCSB Performance Testing

The following specifications are performed against YCSB workloads A, B, and C:

 One YCSB instance runs against one database.

 The test starts with a YCSB thread count of 8.

 The number of threads is increased until latency increases and ops decreases.

 YCSB's performance metrics are collected from YCSB's output at the end of each run.

Workload A is the 50/50% query/update workloads. Workload B is the 95/5% query/update workload, and

workload C is 100% queries. During YCSB execution against the data, the load on the server gradually

increases. When the collection index is loaded in the server’s memory, all the reads coming from servers’

memory and writes go to the storage.

27 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 11) Workload A: 50% read, 50% update.

The following command was used to run workload A, where threads were 8, 16, 32, and 64:

/root/YCSB/bin/ycsb run mongodb -s -P /root/YCSB/workloads/workloada -p

mongodb.url="mongodb://mongodb-s1:27017/ycsb1" -p operationcount=120000000 -p

maxexecutiontime=1800 -threads 16

Figure 12) Workload B: 95% read, 5% update.

The following command was used to run workload B, where threads were 8, 16, 32, and 64:

/root/YCSB/bin/ycsb run mongodb -s -P /root/YCSB/ orkloads/workloada -p

mongodb.url="mongodb://mongodb-s1:27017/ycsb1" -p operationcount=120000000 -p

maxexecutiontime=1800 -threads 16

28 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 13) Workload C: 100% read.

The following command was used to run workload C:

/root/YCSB/bin/ycsb run mongodb -s -P /root/YCSB/workloads/workloadc -p

mongodb.url="mongodb://mongodb-s1:27017/ycsb1" -p operationcount=120000000 -p

maxexecutiontime=1800 -threads 16

Workload customized C is using the YCSB options scanproportion and maxscanlength. These options

allow YCSB to walk through all the documents returned by the MongoDB cursor. When these options are

used, queries submitted to the database generate a considerable amount of random reads at the storage

level.

The AFF A300 was able to handle storage measured 175,400 IOPS at 0.53ms, reading 2.1GBps of data.

Figure 14) Workload customized C: 100% read, FCP throughput.

29 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 15) Workload customized C: 100% read, FCP latency.

Figure 16) Workload customized C: 100% reads, read throughput in GBps.

The following command was used to run workload customized C:

/root/YCSB/bin/ycsb run mongodb -s -P /root/YCSB/workloads/workloadc -p

mongodb.url="mongodb://mongodb-s1:27017/ycsb1" -p operationcount=120000000 -p

maxexecutiontime=1800 -p scanproportion=1 -p updateproportion=0 -p readproportion=0 -p

maxscanlength=8000 -threads 64

4.12 Inline Efficiency

NetApp deduplication and compression are inline storage efficiency technologies that increase the

effective capacity of SSDs and thus reduce the effective cost per gigabyte. Inline storage efficiencies can

also improve system performance because fewer physical blocks are written to store a given amount of

logical data. Inline deduplication and inline compression are two key components of NetApp AFF that

enable users to store the maximum amount of data for the lowest possible cost. These complementary

technologies work together to achieve optimal savings.

30 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

4.13 Deduplication

Deduplication reduces storage capacity requirements by eliminating redundant blocks of data. Figure 17

illustrates this concept. NetApp deduplication improves storage efficiency by locating identical 4K blocks

of data in a flexible volume (a NetApp FlexVol® volume) and replacing the identical blocks with references

to a single shared block. Before it removes the blocks, it performs a byte-level verification check to

confirm that the blocks are identical. This check prevents potential problems that are related to hash

collisions.

Figure 17) Reducing storage capacity requirements through deduplication.

NetApp AFF systems support deduplication as both an inline operation and a postprocess operation. As

writes enter the system, inline deduplication works to eliminate any duplicate blocks that are stored in

memory, thus reducing the amount of space required to store the data.

If postprocess deduplication is enabled, it further tries to reclaim space by scanning the existing data for

duplicates and eliminating them. By default, both inline deduplication and inline zero-block deduplication

are enabled on AFF systems. Inline zero-block deduplication detects zero blocks inline and deduplicates

them before they are written to disk.

4.14 Compression

NetApp compression provides transparent data compression at the file level. NetApp data compression

does not compress the entire file as a single contiguous stream of bytes. Doing so would make it

prohibitively expensive to service small reads or overwrites from part of a file because the entire file would

have to be read from disk and uncompressed before the request could be served. This requirement would

be especially difficult in large files.

To prevent this problem, NetApp data compression compresses a small group of consecutive blocks,

known as a compression group. In this arrangement, when a read or an overwrite request arrives, only a

small group of blocks must be read, not the entire file. This process optimizes read and overwrite

performance and enables greater scalability in the size of the files being compressed.

NetApp supports two types of compression:

 Adaptive compression (8K compression group size)

 Secondary compression (32K compression group size)

Adaptive compression is better suited for workloads that are predominantly composed of random writes

or a mix of sequential and random writes. Secondary compression is better suited for workloads that are

composed mostly of large sequential I/Os (32K or larger).

Compression is supported only as an inline operation on AFF systems. Adaptive inline compression is

enabled by default for all new volumes on AFF systems.

If both compression and deduplication are enabled in a system, compression happens first, followed by

deduplication. Both compression and deduplication can be enabled or disabled at the flexible volume

level.

31 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

The results in Figure 18 show the storage efficiency statistics of MongoDB running the mongoperf

workload on All Flash FAS controllers. The results in Figure 19 indicate a data reduction ratio of greater

than 15:1 with both inline deduplication and inline compression.

Figure 18) Volume efficiency statistics from Perfstat.

32 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Figure 19) Data reduction of over 15:1 with inline deduplication and inline compression.

Important Note

Because of its inline deduplication and compression capabilities, the NetApp All Flash FAS

demonstrated a data reduction ratio of greater than 15:1 throughout the testing.

Note: The mongoperf workload writes many zeros in its read and write operations. Therefore, your
storage efficiency might vary depending on the type and amount of data in your deployment.

5 Summary

The reference architecture described in this document provides an end-to-end solution for efficiently

deploying a virtualized scale-out MongoDB NoSQL database on the NetApp Data Fabric. In the tested

architecture of NetApp storage technology and VMware vSphere, MongoDB VMs and databases were

hosted on the scale-out NetApp AFF array. Backups were created by using Snap Creator, and disaster

recovery was handled through a NetApp ONTAP Cloud software-defined storage solution and NetApp

Private Storage solutions in AWS.

The following key benefits were validated in this solution:

 Predictable high performance with consistent low latency, providing very fast response time to the
most demanding analytics applications built on MongoDB

 Inline deduplication and compression to achieve cost efficiency for MongoDB on flash storage

 Instant, space-efficient database cloning for rapid setup of dev/test and QA environments without the
need to buy new storage

33 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

 Backup and recovery based on space-efficient NetApp Snapshot copies and on remote replication to
the cloud

In addition to the validation, NetApp AFF strongly complements MongoDB with the following key

capabilities:

 Scale-up and scale-out all-flash array to modularly scale storage with MongoDB

 Nondisruptive operations to deliver maximum uptime and high availability

During the YCSB performance testing, NetApp AFF demonstrated excellent test results to deliver a high-

performance, cost-effective all-flash array for scaling out MongoDB deployments.

Appendix A: Python Scripts

Copy the Python scripts to /usr/local/bin in MongoDB application servers.

1. fsync-lock.py (This script is required only for the MMAPv1 storage engine.)

import random

import time

import sys

from pymongo import Connection

server=sys.argv[1]

port=int(sys.argv[2])

connection = Connection(server, port)

db = connection.admin #connect to database admin

db.command("fsync", lock=True)

2. fsync-unlock.py (This script is required only for the MMAP storage engine.)

import random

import time

import sys

from pymongo import Connection

server=sys.argv[1]

port=int(sys.argv[2])

connection = Connection(server, port)

db = connection.admin #connect to database admin

db["$cmd.sys.unlock"].find_one()

3. wait-for-cleared-locks.py

import random

import time

import sys

from pymongo.son_manipulator import SONManipulator

from pymongo import Connection

server=sys.argv[1]

port=int(sys.argv[2])

#connection = Connection('appserver', 27017)

connection = Connection(server, port)

class Transform(SONManipulator):

 def transform_incoming(self, son, collection):

 for (key, value) in son.items():

 if isinstance(value, Custom):

 son[key] = encode_custom(value)

 elif isinstance(value, dict): # Make sure we recurse into sub-docs

 son[key] = self.transform_incoming(value, collection)

 return son

 def transform_outgoing(self, son, collection):

 for (key, value) in son.items():

 if isinstance(value, dict):

 if "_type" in value and value["_type"] == "custom":

son[key] = decode_custom(value) else: # Again, make sure to recurse into sub-docs
 son[key] = self.transform_outgoing(value, collection)

 return son

db = connection.config #connect to database config

db.add_son_manipulator(Transform())

34 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

balancer_status = db.locks.find_one({'_id': 'balancer' })['state']

print balancer_status

if balancer_status > 0 : #not null

balancer_status = db.locks.find_one({'_id': 'balancer'})['state'] while (balancer_status != 0):

#wait until balancer has stopped

 time.sleep(1)

 balancer_status = db.locks.find_one({'_id': 'balancer'})['state']

 print balancer_status

#STOP the balancer

db.settings.update({ ‘_id’: ‘balancer’ }, { ‘$set’: { 'stopped': True } })

4. start-balancer.py

import random

import time

import sys

from pymongo import Connection

server=sys.argv[1]

port=int(sys.argv[2])

connection = Connection(server, port)

db = connection.config #connect to database config servers

db.settings.update({ “_id”: “balancer” }, { “$set”: { “stopped”: False } }) #start balancer

Appendix B: MongoDB Operations

Use the following steps to configure the sharding cluster with MongoDB operations and add two shards

into the sharding cluster.

1. Check the mounted partitions for the MongoDB database:

 df –h and /etc/fstab file for mdb-srv-1, mdb-srv-10, and mdb-srv11:

[mongodb@mdb-srv-1 db_wt]$ df –h /data

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 1014G 1014G 204M 100% /data

[mongodb@mdb-srv-1 db_wt]$

[mongodb@mdb-srv-1 db_wt]$ cat /etc/fstab | grep sdb

/dev/sdb1 /data xfs defaults 0 0

[mongodb@mdb-srv-1 db_wt]$

[mongodb@mdb-srv-10 db_wt]$ df –h /data

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 1014G 62G 952G 7% /data

[mongodb@mdb-srv-10 db_wt]$

[mongodb@mdb-srv-10 db_wt]$ cat /etc/fstab | grep sdb

/dev/sdb1 /data xfs defaults 0 0

[mongodb@mdb-srv-10 db_wt]$

[mongodb@mdb-srv-11 ~]$ df –h /data

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 1014G 166G 849G 17% /data

[mongodb@mdb-srv-11 ~]$

[mongodb@mdb-srv-11 ~]$ cat /etc/fstab | grep sdb

/dev/sdb1 /data xfs defaults 0 0

[mongodb@mdb-srv-11 ~]$

 df –h and /etc/fstab file for mdb-srv-2, mdb-srv-20, and mdb-srv21:

[mongodb@mdb-srv-2 db_wt]$ df –h /data

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 1014G 154G 861G 16% /data

[mongodb@mdb-srv-2 db_wt]$ cat /etc/fstab | grep sdb

/dev/sdb1 /data xfs defaults 0 0

[mongodb@mdb-srv-2 db_wt]$

[mongodb@mdb-srv-20 ~]$ df –h /data

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 1014G 688G 326G 68% /data

[mongodb@mdb-srv-20 ~]$

35 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

[mongodb@mdb-srv-20 ~]$ cat /etc/fstab | grep sdb

/dev/sdb1 /data xfs defaults 0 0

[mongodb@mdb-srv-20 ~]$

[mongodb@mdb-srv-21 ~]$ df –h /data

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 1014G 1014G 20K 100% /data

[mongodb@mdb-srv-21 ~]$

[mongodb@mdb-srv-21 ~]$ cat /etc/fstab | grep sdb

/dev/sdb1 /data xfs defaults 0 0

[mongodb@mdb-srv-21 ~]$

2. Check and run the shard cluster members in the MongoDB sharding cluster; create the required
folders, and provide the required permissions.

Note: The mongod process starts with default ports (27018 and 28018). Alternatively, you can
specify ports.

a. Check and run the mongod process in the mdb-srv-1 sharding member.

[root@mdb-srv-1 ~]# groupadd -g 8000 mongodb

[root@mdb-srv-1 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-srv-1 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-1 ~]# chmod -R 700 /mongodb

[root@mdb-srv-1 ~]# su - mongodb

[mongodb@mdb-srv-1 ~]$ mongod --replSet shard1/mdb-srv-10,mdb-srv-11 --journal --rest --shardsvr

--fork --logpath /mongodb/data/mongod.log

2015-11-22T11:24:54.898-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-22T11:24:54.898-0500 I CONTROL ** enabling http interface

about to fork child process, waiting until server is ready for connections.

forked process: 23285

child process started successfully, parent exiting

[mongodb@mdb-srv-1 ~]$ netstat -lntp

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:27018 0.0.0.0:* LISTEN 23285/mongod

tcp 0 0 0.0.0.0:28018 0.0.0.0:* LISTEN 23285/mongod

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

tcp6 0 0 :::22 :::* LISTEN -

tcp6 0 0 ::1:631 :::* LISTEN -

tcp6 0 0 ::1:25 :::* LISTEN -

[mongodb@mdb-srv-1 ~]$

b. Check and run the mongod process in the mdb-srv-10 sharding member.

[root@mdb-srv-10 ~]# groupadd -g 8000 mongodb

[root@mdb-srv-10 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-srv-10 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-10 ~]# chmod -R 700 /mongodb

[root@mdb-srv-10 ~]# mkdir -p /mongodb/data

[root@mdb-srv-10 ~]# mkdir -p /data/db

[root@mdb-srv-10 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-10 ~]# chown -R mongodb:mongodb /data

[root@mdb-srv-10 ~]# su - mongodb

[mongodb@mdb-srv-10 ~]$ mongod --replSet shard1/mdb-srv-1,mdb-srv-11 --journal --rest --shardsvr

--fork --logpath /mongodb/data/mongod.log

2015-11-22T11:26:15.732-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-22T11:26:15.732-0500 I CONTROL ** enabling http interface

about to fork child process, waiting until server is ready for connections.

forked process: 11253

child process started successfully, parent exiting

[mongodb@mdb-srv-10 ~]$

[mongodb@mdb-srv-10 ~]$ netstat -lntp

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

36 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

tcp 0 0 0.0.0.0:27018 0.0.0.0:* LISTEN 11253/mongod

tcp 0 0 0.0.0.0:28018 0.0.0.0:* LISTEN 11253/mongod

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

tcp6 0 0 :::22 :::* LISTEN -

tcp6 0 0 ::1:25 :::* LISTEN -

[mongodb@mdb-srv-10 ~]$

c. Check and run the mongod process in the mdb-srv-11 sharding member.

[root@mdb-srv-11 ~]# groupadd -g 8000 mongodb

[root@mdb-srv-11 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-srv-11 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-11 ~]# chmod -R 700 /mongodb

[root@mdb-srv-11 ~]# mkdir -p /mongodb/data

[root@mdb-srv-11 ~]# mkdir -p /data/db

[root@mdb-srv-11 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-11 ~]# chown -R mongodb:mongodb /data

[root@mdb-srv-11 ~]# su - mongodb

[mongodb@mdb-srv-11 ~]$ mongod --replSet shard1/mdb-srv-1,mdb-srv-10 --journal --rest --shardsvr

--fork --logpath /mongodb/data/mongod.log

2015-11-22T11:32:49.930-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-22T11:32:49.930-0500 I CONTROL ** enabling http interface

about to fork child process, waiting until server is ready for connections.

forked process: 11411

child process started successfully, parent exiting

[mongodb@mdb-srv-11 ~]$

[mongodb@mdb-srv-11 ~]$ netstat -lntp

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:27018 0.0.0.0:* LISTEN 11411/mongod

tcp 0 0 0.0.0.0:28018 0.0.0.0:* LISTEN 11411/mongod

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

tcp6 0 0 :::22 :::* LISTEN -

tcp6 0 0 ::1:25 :::* LISTEN -

[mongodb@mdb-srv-11 ~]$

3. Verify that all config servers in MongoDB folders such as logpath (/mongodb/data/configdb) and

dbpath (/data/db) are created. Verify that they have mongodb user permission (700) and that the

mongod process is running in fork mode and on the right port (27019).

 mdb-cfg-3 config server:

[root@mdb-cfg-3 ~]# groupadd -g 8000 mongodb

[root@mdb-cfg-3 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-cfg-3 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-cfg-3 ~]# mkdir -p /mongodb/data

[root@mdb-cfg-3 ~]# mkdir -p /data/db

[root@mdb-cfg-3 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-cfg-3 ~]# chown -R mongodb:mongodb /data

[root@mdb-cfg-3 ~]# mkdir /mongodb/data/configdb

mkdir: cannot create directory ‘/mongodb/data/configdb’: File exists

[root@mdb-cfg-3 ~]# chmod -R 700 /mongodb

[root@mdb-cfg-3 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-cfg-3 ~]#

[root@mdb-cfg-3 ~]# su - mongodb

Last login: Sun Nov 22 16:09:05 EST 2015 on pts/1

[mongodb@mdb-cfg-3 ~]$ mongod --configsvr --dbpath /mongodb/data/configdb --port 27019 --fork --

logpath /mongodb/data/arbiter.log

about to fork child process, waiting until server is ready for connections.

forked process: 30546

child process started successfully, parent exiting

[mongodb@mdb-cfg-3 ~]$

[mongodb@mdb-cfg-3 ~]$ netstat -lntp | grep 27

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

tcp 0 0 0.0.0.0:27019 0.0.0.0:* LISTEN 30546/mongod

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -

37 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

[mongodb@mdb-cfg-3 ~]$

 mdb-cfg-1 config server:

[root@mdb-cfg-1 ~]# mongod --configsvr --dbpath /mongodb/data/configdb --port 27019 --fork --

logpath /mongodb/data/arbiter.log

about to fork child process, waiting until server is ready for connections.

forked process: 19925

child process started successfully, parent exiting

[root@mdb-cfg-1 ~]# netstat -lntp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:27019 0.0.0.0:* LISTEN 19925/mongod

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1035/sshd

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 1618/cupsd

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 1163/master

tcp6 0 0 :::22 :::* LISTEN 1035/sshd

tcp6 0 0 ::1:631 :::* LISTEN 1618/cupsd

tcp6 0 0 ::1:25 :::* LISTEN 1163/master

[root@mdb-cfg-1 ~]#

 mdb-cfg-2 config server:

[root@mdb-cfg-2 ~]# su - mongodb

Last login: Sun Nov 22 15:38:33 EST 2015 on pts/1

[mongodb@mdb-cfg-2 ~]$ ls -ltrh /tmp/mongodb-27019.sock

ls: cannot access /tmp/mongodb-27019.sock: No such file or directory

[mongodb@mdb-cfg-2 ~]$

[mongodb@mdb-cfg-2 ~]$ mongod --configsvr --dbpath /mongodb/data/configdb --port 27019 --fork --

logpath /mongodb/data/arbiter.log

about to fork child process, waiting until server is ready for connections.

forked process: 30020

child process started successfully, parent exiting

[mongodb@mdb-cfg-2 ~]$

4. Start the mongos process in the MongoDB router or application server and verify that the port (27017)
is listening:

a. Start the mongos in MongoDB application server mdb-ms-1.

[root@mdb-ms-1 ~]# groupadd -g 8000 mongodb

[root@mdb-ms-1 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-ms-1 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-ms-1 ~]# mkdir -p /mongodb/data

[root@mdb-ms-1 ~]# mkdir -p /data/db

[root@mdb-ms-1 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-ms-1 ~]# chown -R mongodb:mongodb /data

[root@mdb-ms-1 ~]# chmod -R 700 /mongodb

[root@mdb-ms-1 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-ms-1 ~]# su - mongodb

Last login: Sun Nov 22 16:16:10 EST 2015 on pts/2

[mongodb@mdb-ms-1 ~]$ mongos --configdb mdb-cfg-1:27019,mdb-cfg-2:27019,mdb-cfg-3:27019 --logpath

/mongodb/log

login.defs logrotate.conf logrotate.d/

[mongodb@mdb-ms-1 ~]$ mongos --configdb mdb-cfg-1:27019,mdb-cfg-2:27019,mdb-cfg-3:27019 --logpath

/mongodb/data/mongos.log --fork --port 27017

about to fork child process, waiting until server is ready for connections.

forked process: 10214

child process started successfully, parent exiting

[mongodb@mdb-ms-1 ~]$

b. Start the mongos process in MongoDB application server mdb-ms-2. (Make sure that the required

folders are already created and that they have the required permissions.)

[mongodb@mdb-ms-2 ~]$ mongos --configdb mdb-cfg-1:27019,mdb-cfg-2:27019,mdb-cfg-3:27019 --

logpath /mongodb/data/mongos.log

2015-11-23T09:24:30.102-0500 I CONTROL log file "/mongodb/data/mongos.log" exists; moved to

"/mongodb/data/mongos.log.2015-11-23T14-24-30".

38 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

5. Connect to the MongoDB shard primary server (mdb-srv-1) from the MongoDB application server

and initiate the replication set.

[mongodb@mdb-ms-1 ~]$ mongo mdb-srv-1:27018/admin

MongoDB shell version: 3.0.7

connecting to: mdb-srv-1:27018/admin

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

 http://docs.mongodb.org/

Questions? Try the support group

 http://groups.google.com/group/mongodb-user

Server has startup warnings:

2015-11-22T11:24:54.898-0 500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-22T11:24:54.898-0500 I CONTROL ** enabling http interface

2015-11-22T11:24:54.942-0500 I STORAGE [initandlisten]

2015-11-22T11:24:54.943-0500 I STORAGE [initandlisten] ** WARNING: Readahead for /data/db is set

to 4096KB

2015-11-22T11:24:54.943-0500 I STORAGE [initandlisten] ** We suggest setting it to

256KB (512 sectors) or less

2015-11-22T11:24:54.943-0500 I STORAGE [initandlisten] **

http://dochub.mongodb.org/core/readahead

> cfg = {

... _id : "shard1",

... members : [

... {_id : 0, host : "mdb-srv-1:27018"},

... {_id : 1, host : "mdb-srv-10:27018"},

... {_id : 2, host : "mdb-srv-11:27018"}

...]

... }

{

 "_id" : "shard1",

 "members" : [

 {

 "_id" : 0,

 "host" : "mdb-srv-1:27018"

 },

 {

 "_id" : 1,

 "host" : "mdb-srv-10:27018"

 },

 {

 "_id" : 2,

 "host" : "mdb-srv-11:27018"

 }

]

}

> rs.initiate(cfg);

{ "ok" : 1 }

shard1:OTHER> exit

bye

[mongodb@mdb-ms-1 ~]$

6. Check the replication set status from the shard member.

[mongodb@mdb-srv-1 ~]$ mongo --host mdb-srv-1 --port 27018

MongoDB shell version: 3.0.7

connecting to: mdb-srv-1:27018/test

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

 http://docs.mongodb.org/

Questions? Try the support group

 http://groups.google.com/group/mongodb-user

Server has startup warnings:

2015-11-22T11:24:54.898-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-22T11:24:54.898-0500 I CONTROL ** enabling http interface

2015-11-22T11:24:54.942-0500 I STORAGE [initandlisten]

2015-11-22T11:24:54.943-0500 I STORAGE [initandlisten] ** WARNING: Readahead for /data/db is set

to 4096KB

39 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

2015-11-22T11:24:54.943-0500 I STORAGE [initandlisten] ** We suggest setting it to

256KB (512 sectors) or less

2015-11-22T11:24:54.943-0500 I STORAGE [initandlisten] **

http://dochub.mongodb.org/core/readahead

shard1:PRIMARY> rs.printReplicationInfo()

configured oplog size: 990MB

log length start to end: 0secs (0hrs)

oplog first event time: Sun Nov 22 2015 16:26:37 GMT-0500 (EST)

oplog last event time: Sun Nov 22 2015 16:26:37 GMT-0500 (EST)

now: Mon Nov 23 2015 05:11:29 GMT-0500 (EST)

shard1:PRIMARY>

PRIMARY> rs.status()

{

 "set" : "shard1",

 "date" : ISODate("2015-11-23T10:27:01.006Z"),

 "myState" : 1,

 "members" : [

 {

 "_id" : 0,

 "name" : "mdb-srv-1:27018",

 "health" : 1,

 "state" : 1,

 "stateStr" : "PRIMARY",

 "uptime" : 64927,

 "optime" : Timestamp(1448227597, 1),

 "optimeDate" : ISODate("2015-11-22T21:26:37Z"),

 "electionTime" : Timestamp(1448227599, 1),

 "electionDate" : ISODate("2015-11-22T21:26:39Z"),

 "configVersion" : 1,

 "self" : true

 },

 {

 "_id" : 1,

 "name" : "mdb-srv-10:27018",

 "health" : 1,

 "state" : 2,

 "stateStr" : "SECONDARY",

 "uptime" : 46823,

 "optime" : Timestamp(1448227597, 1),

 "optimeDate" : ISODate("2015-11-22T21:26:37Z"),

 "lastHeartbeat" : ISODate("2015-11-23T10:27:00.525Z"),

 "lastHeartbeatRecv" : ISODate("2015-11-23T10:27:00.524Z"),

 "pingMs" : 0,

 "configVersion" : 1

 },

 {

 "_id" : 2,

 "name" : "mdb-srv-11:27018",

 "health" : 1,

 "state" : 2,

 "stateStr" : "SECONDARY",

 "uptime" : 46823,

 "optime" : Timestamp(1448227597, 1),

 "optimeDate" : ISODate("2015-11-22T21:26:37Z"),

 "lastHeartbeat" : ISODate("2015-11-23T10:27:00.525Z"),

 "lastHeartbeatRecv" : ISODate("2015-11-

23T10:27:00.524Z"),

 "pingMs" : 0,

 "configVersion" : 1

 }

],

 "ok" : 1

}

shard1:PRIMARY>

7. Add a shard from the application server.

 [mongodb@mdb-ms-1 ~]$ mongo mdb-ms-1:27017/admin

MongoDB shell version: 3.0.7

connecting to: mdb-ms-1:27017/admin

40 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

mongos> db.adminCommand({ addShard : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

})

{ "shardAdded" : "shard1", "ok" : 1 }

mongos>

8. Try to add the same shard from another application server by connecting to the replication set
member.

 [mongodb@mdb-ms-2 ~]$ mongo --host mdb-ms-2 --port 27017

MongoDB shell version: 3.0.7

connecting to: mdb-ms-2:27017/test

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

 http://docs.mongodb.org/

Questions? Try the support group

 http://groups.google.com/group/mongodb-user

mongos> db.adminCommand({ addShard : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

})

{ "ok" : 0, "errmsg" : "host already used" }

mongos>

9. Check the sharding status from the application server.

 [mongodb@mdb-ms-1 ~]$ mongo mdb-ms-1:27017/admin

MongoDB shell version: 3.0.7

connecting to: mdb-ms-1:27017/admin

mongos>

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 2

 Last reported error: could not get status from server mdb-cfg-3:27019 in cluster mdb-

cfg-3:27019 to check time :: caused by :: 10276 DBClientBase::findN: transport error: mdb-cfg-

3:27019 ns: admin.$cmd query: { serverStatus: 1 }

 Time of Reported error: Mon Nov 23 2015 09:43:07 GMT-0500 (EST)

 Migration Results for the last 24 hours:

 No recent migrations

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

mongos>

10. Add a new shard into an existing sharding cluster.

Note: You can build another shard as the mongodb user by using the same steps that you used for
shard1. In the following example, root is the user.

a. Check and run the mongod process in the mdb-srv-2 sharding member.

[root@mdb-srv-2 ~]# groupadd -g 8000 mongodb

[root@mdb-srv-2 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-srv-2 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-2 ~]# mkdir -p /mongodb/data

[root@mdb-srv-2 ~]# mkdir -p /data/db

[root@mdb-srv-2 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-2 ~]# chown -R mongodb:mongodb /data

[root@mdb-srv-2 ~]# chmod -R 700 /mongodb

[root@mdb-srv-2 ~]# chown -R mongodb:mongodb /mongodb

41 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

[root@mdb-srv-2 ~]# mongod --replSet shard2/mdb-srv-20,mdb-srv-21 --journal --rest --shardsvr --

fork --logpath /mongodb/data/mongod.log

2015-11-23T10:57:29.617-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-23T10:57:29.617-0500 I CONTROL ** enabling http interface

about to fork child process, waiting until server is ready for connections.

forked process: 12186

child process started successfully, parent exiting

[root@mdb-srv-2 ~]#

[root@mdb-srv-2 ~]# netstat -lntp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:27018 0.0.0.0:* LISTEN 12186/mongod

tcp 0 0 0.0.0.0:28018 0.0.0.0:* LISTEN 12186/mongod

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1038/sshd

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 1170/master

tcp6 0 0 :::22 :::* LISTEN 1038/sshd

tcp6 0 0 ::1:25 :::* LISTEN 1170/master

[root@mdb-srv-2 ~]#

b. Check and run the mongod process in the mdb-srv-20 sharding member.

[root@mdb-srv-20 ~]# groupadd -g 8000 mongodb

[root@mdb-srv-20 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-srv-20 ~]#

[root@mdb-srv-20 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-20 ~]# mkdir -p /mongodb/data

[root@mdb-srv-20 ~]# mkdir -p /data/db

[root@mdb-srv-20 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-20 ~]# chown -R mongodb:mongodb /data

[root@mdb-srv-20 ~]# chmod -R 700 /mongodb

[root@mdb-srv-20 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-20 ~]# mongod --replSet shard2/mdb-srv-2,mdb-srv-21 --journal --rest --shardsvr --

fork --logpath /mongodb/data/mongod.log

2015-11-23T10:58:52.341-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-23T10:58:52.341-0500 I CONTROL ** enabling http interface

about to fork child process, waiting until server is ready for connections.

forked process: 12018

child process started successfully, parent exiting

[root@mdb-srv-20 ~]# netstat -lntp | grep 27018

tcp 0 0 0.0.0.0:27018 0.0.0.0:* LISTEN 12018/mongod

[root@mdb-srv-20 ~]#

c Check and run the mongod process in the mdb-srv-21 sharding member.

[root@mdb-srv-21 ~]# groupadd -g 8000 mongodb

[root@mdb-srv-21 ~]# useradd -u 8000 -g 8000 -d /mongodb mongodb

[root@mdb-srv-21 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-21 ~]# mkdir -p /mongodb/data

[root@mdb-srv-21 ~]# mkdir -p /data/db

[root@mdb-srv-21 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-21 ~]# chown -R mongodb:mongodb /data

[root@mdb-srv-21 ~]# chmod -R 700 /mongodb

[root@mdb-srv-21 ~]# chown -R mongodb:mongodb /mongodb

[root@mdb-srv-21 ~]# mongod --replSet shard2/mdb-srv-2,mdb-srv-20 --journal --rest --shardsvr --

fork --logpath /mongodb/data/mongod.log

2015-11-23T11:02:05.693-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

2015-11-23T11:02:05.693-0500 I CONTROL ** enabling http interface

about to fork child process, waiting until server is ready for connections.

forked process: 13787

child process started successfully, parent exiting

[root@mdb-srv-21 ~]#

d. Connect to the shard primary server from the application server to initiate the replica set for the
second shard.

[mongodb@mdb-ms-1 ~]$ mongo mdb-srv-2:27018/admin

MongoDB shell version: 3.0.7

connecting to: mdb-srv-2:27018/admin

Server has startup warnings:

2015-11-23T10:57:29.617-0500 I CONTROL ** WARNING: --rest is specified without --httpinterface,

42 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

2015-11-23T10:57:29.617-0500 I CONTROL ** enabling http interface

2015-11-23T10:57:29.661-0500 I STORAGE [initandlisten]

2015-11-23T10:57:29.661-0500 I STORAGE [initandlisten] ** WARNING: Readahead for /data/db is set

to 4096KB

2015-11-23T10:57:29.661-0500 I STORAGE [initandlisten] ** We suggest setting it to

256KB (512 sectors) or less

2015-11-23T10:57:29.661-0500 I STORAGE [initandlisten] **

http://dochub.mongodb.org/core/readahead

2015-11-23T10:57:29.716-0500 I CONTROL [initandlisten] ** WARNING: You are running this process

as the root user, which is not recommended.

2015-11-23T10:57:29.716-0500 I CONTROL [initandlisten]

> cfg = {

... _id : "shard2",

... members : [

... {_id : 0, host : "mdb-srv-2:27018"},

... {_id : 1, host : "mdb-srv-20:27018"},

... {_id : 2, host : "mdb-srv-21:27018"}

...]

... }

{

 "_id" : "shard2",

 "members" : [

 {

 "_id" : 0,

 "host" : "mdb-srv-2:27018"

 },

 {

 "_id" : 1,

 "host" : "mdb-srv-20:27018"

 },

 {

 "_id" : 2,

 "host" : "mdb-srv-21:27018"

 }

]

}

> rs.initiate(cfg);

{ "ok" : 1 }

shard2:SECONDARY>

 exit

bye

[mongodb@mdb-ms-1 ~]$

e. Build the second shard and check the shard status from the MongoDB router or application
server.

[mongodb@mdb-ms-1 ~]$ mongo mdb-ms-1:27017/admin

MongoDB shell version: 3.0.7

connecting to: mdb-ms-1:27017/admin

mongos> db.adminCommand({ addShard : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

})

{ "shardAdded" : "shard2", "ok" : 1 }

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 { "_id" : "shard2", "host" : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

}

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 5

43 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

 Last reported error: could not get status from server mdb-cfg-1:27019 in cluster mdb-

cfg-1:27019 to check time :: caused by :: 10276 DBClientBase::find N: transport error: mdb-cfg-

1:27019 ns: admin.$cmd query: { serverStatus: 1 }

 Time of Reported error: Mon Nov 23 2015 10:24:51 GMT-0500 (EST)

 Migration Results for the last 24 hours:

 No recent migrations

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

mongos>

11. Check the MongoDB sharding cluster status by using the sh.status() command from the

MongoDB application server.

 [mongodb@mdb-ms-1 ~]$ mongo mdb-ms-1:27017/admin

MongoDB shell version: 3.0.7

connecting to: mdb-ms-1:27017/admin

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 { "_id" : "shard2", "host" : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

}

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 0

 Migration Results for the last 24 hours:

 No recent migrations

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

 { "_id" : "newbgdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "test", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "newdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "ndb", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "mdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "ldb", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "newbulkdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "bulkdb2", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "posts", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db1", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db2", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db3", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db4", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db5", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db6", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db7", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db8", "partitioned" : false, "primary" : "shard1" }

mongos>

12. Enable the sharding for database and collections

mongos> db.runCommand({enableSharding: "db8"})

{

 "ok" : 0,

 "errmsg" : "enableSharding may only be run against the admin database.",

 "code" : 13

}

mongos> use admin

switched to db admin

mongos> db.runCommand({enableSharding: "db8"})

{ "ok" : 1 }

44 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 { "_id" : "shard2", "host" : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

}

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 5

 Last reported error: clock skew of the cluster mdb-cfg-1:27019,mdb-cfg-2:27019,mdb-cfg-

3:27019 is too far out of bounds to

allow distributed locking.

 Time of Reported error: Wed Feb 24 2016 08:55:11 GMT-0500 (EST)

 Migration Results for the last 24 hours:

 No recent migrations

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

 { "_id" : "newbgdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "test", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "newdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "ndb", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "mdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "ldb", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "newbulkdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "bulkdb2", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "posts", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db1", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db2", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db3", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db5", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db6", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "db7", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db8", "partitioned" : true, "primary" : "shard1" }

mongos> db.runCommand({enableSharding: "db1"})

{ "ok" : 1 }

mongos> db.runCommand({enableSharding: "db2"})

{ "ok" : 1 }

mongos> db.runCommand({enableSharding: "db3"})

{ "ok" : 1 }

mongos> db.runCommand({enableSharding: "db4"})

{ "ok" : 1 }

mongos> db.runCommand({enableSharding: "db5"})

{ "ok" : 1 }

mongos> db.runCommand({enableSharding: "db6"})

{ "ok" : 1 }

mongos> db.runCommand({enableSharding: "db7"})

{ "ok" : 1 }

mongos> db.runCommand({enableSharding: "db8"})

{ "ok" : 0, "errmsg" : "already enabled" }

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 { "_id" : "shard2", "host" : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

}

45 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 5

 Last reported error: clock skew of the cluster mdb-cfg-1:27019,mdb-cfg-2:27019,mdb-cfg-

3:27019 is too far out of bounds to

allow distributed locking.

 Time of Reported error: Wed Feb 24 2016 08:55:51 GMT-0500 (EST)

 Migration Results for the last 24 hours:

 No recent migrations

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

 { "_id" : "newbgdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "test", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "newdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "ndb", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "mdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "ldb", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "newbulkdb", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "bulkdb2", "partitioned" : false, "primary" : "shard2" }

 { "_id" : "posts", "partitioned" : false, "primary" : "shard1" }

 { "_id" : "db1", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db2", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db3", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db4", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db5", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db6", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db7", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db8", "partitioned" : true, "primary" : "shard1" }

mongos>

For an example in this document, we enable sharding to c7 collection with key as “_id”, you can do the

same procedure to all the collections.

Important Note

In addition to database sharding, we need to enable collection sharding using “db.runcommand ({

shardCollection: <dbname>.<collectionname> , key : { <shardkey> } }) command. As a best practice,

it’s not recommended to use the incremental field as the shardkey.

mongos> use admin

switched to db admin

mongos> db.runCommand({ shardCollection: "db7.c7", key: { _id : 1 } })

{ "collectionsharded" : "db7.c7", "ok" : 1 }

mongos>

mongos> sh.status();

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("565315e55e022cd500e768d5")

}

 shards:

 { "_id" : "shard1", "host" : "shard1/mdb-srv-1:27018,mdb-srv-10:27018,mdb-srv-11:27018"

}

 { "_id" : "shard2", "host" : "shard2/mdb-srv-2:27018,mdb-srv-20:27018,mdb-srv-21:27018"

}

 balancer:

 Currently enabled: yes

 Currently running: yes

46 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

 Balancer lock taken at Wed Mar 16 2016 03:33:25 GMT-0400 (EDT) by mdb-ms-

1:27017:1456308560:1804289383:Balancer:846930886

 Collections with active migrations:

 db7.c7 started at Wed Mar 16 2016 03:33:25 GMT-0400 (EDT)

 Failed balancer rounds in last 5 attempts: 0

 Migration Results for the last 24 hours:

 1 : Success

 databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config" }

 { "_id" : "newbgdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "test", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "newdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "ndb", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "mdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "ldb", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "newbulkdb", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "bulkdb2", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "posts", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db1", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db2", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db3", "partitioned" : true, "primary" : "shard1" }

 { "_id" : "db4", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db5", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db6", "partitioned" : true, "primary" : "shard2" }

 { "_id" : "db7", "partitioned" : true, "primary" : "shard1" }

 db7.c7

 shard key: { "_id" : 1 }

 chunks:

 shard1 16122

 shard2 1

 too many chunks to print, use verbose if you want to force print

 { "_id" : "netbgdb", "partitioned" : true, "primary" : "shard2" }

mongos>

Note: At this point, the database is already loaded, and the data is spread across the sharding cluster
(shard1 and shard2).

Acknowledgements

The authors would like to thank the following people for their contributions to this report:

 Sheena Badani, Director, Technology and VAR Partners, MongoDB

 Nilesh Bagad, Senior Product Manager, Big Data Analytics, NetApp

 Scott Lane, Senior Manager, Workload Engineering, NetApp

 Chris Lemmons, Director, DSG Technical Marketing for Business Processing Workloads, NetApp

References

The following documents and resources are mentioned in or related to this report:

 Clustered Data ONTAP 8.3 Cluster Peering Express Guide
https://library.netapp.com/ecm/ecm_download_file/ECMP1547469

 Introduction to MongoDB
https://docs.mongodb.org/manual/core/introduction/

 MongoDB NetApp partner webpage
https://www.mongodb.com/partners/netapp

 mongoperf
https://docs.mongodb.org/manual/reference/program/mongoperf/

https://library.netapp.com/ecm/ecm_download_file/ECMP1547469
https://docs.mongodb.org/manual/core/introduction/
https://www.mongodb.com/partners/netapp
https://docs.mongodb.org/manual/reference/program/mongoperf/

47 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

 NetApp AFF
http://www.netapp.com/us/products/storage-systems/all-flash-fas/

 NetApp ONTAP Cloud for Amazon Web Services
http://www.netapp.com/us/media/ds-3618.pdf

 NetApp Support
http://mysupport.netapp.com/

 OnCommand Cloud Manager 1.0 Installation and Setup Guide
https://library.netapp.com/ecm/ecm_download_file/ECMP1651524

 YCSB

https://github.com/brianfrankcooper/YCSB/wiki

 Production Cluster Architecture
https://docs.mongodb.org/manual/core/sharded-cluster-architectures-production/

 Snap Creator Framework
http://www.netapp.com/us/products/management-software/snapcreator-framework.aspx

 The MongoDB 3.2 Manual
https://docs.mongodb.org/manual

 TR-4391: NetApp Data Fabric with FlexPod and Cisco Intercloud Fabric
http://www.netapp.com/us/media/tr-4391.pdf

 WiredTiger Storage Engine
https://docs.mongodb.org/manual/core/wiredtiger/

 WP-7218: NetApp Data Fabric Architecture Fundamentals: Building a Data Fabric Today
http://www.netapponcloud.com/hubfs/Data-Fabric/datafabric-wp.pdf

http://www.netapp.com/us/products/storage-systems/all-flash-fas/
http://www.netapp.com/us/media/ds-3618.pdf
http://mysupport.netapp.com/
https://library.netapp.com/ecm/ecm_download_file/ECMP1651524
https://github.com/brianfrankcooper/YCSB/wiki
https://docs.mongodb.org/manual/core/sharded-cluster-architectures-production/
http://www.netapp.com/us/products/management-software/snapcreator-framework.aspx
https://docs.mongodb.org/manual
http://www.netapp.com/us/media/tr-4391.pdf
https://docs.mongodb.org/manual/core/wiredtiger/
http://www.netapponcloud.com/hubfs/Data-Fabric/datafabric-wp.pdf

48 MongoDB on the NetApp Data Fabric © 2017 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved.

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact
product and feature versions described in this document are supported for your specific environment. The
NetApp IMT defines the product components and versions that can be used to construct configurations
that are supported by NetApp. Specific results depend on each customer’s installation in accordance with
published specifications.

Copyright Information

Copyright © 1994–2017 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document
covered by copyright may be reproduced in any form or by any means—graphic, electronic, or
mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—
without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY
DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein, except as
expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license
under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

http://mysupport.netapp.com/matrix
http://www.netapp.com/TM

